|
|
Строка 1: |
Строка 1: |
- | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика: Методы решения систем уравнений<metakeywords>Методы решения систем уравнений</metakeywords>''' | + | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 9 класс|Математика 9 класс]]>>Математика: Методы решения систем уравнений<metakeywords>Методы решения систем уравнений, систем уравнений, алгоритмом, Переменные, уравнение, алгебраического сложения, рациональных уравнений, методом подстановки, иррациональных</metakeywords>''' |
| | | |
| <br> | | <br> |
| | | |
- | '''МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ'''<br> | + | '''Методы решения систем уравнений'''<br> |
| | | |
- | <br>В этом параграфе мы обсудим три метода решения систем уравнений, более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.<br>'''1. Метод подстановки'''<br>Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).<br>'''''Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.'''''<br>'''1.''' Выразить у через х из одного уравнения системы.<br>'''2.''' Подставить полученное выражение вместо у в другое уравнение системы.<br>'''3.''' Решить полученное уравнение относительно х.<br>'''4.''' Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.<br>'''5.''' Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.<br>Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.<br>'''Пример 1.''' Решить систему уравнений [[Image:Al61.jpg]]<br>'''Р е ш е н и е. 1)''' Выразим х через у из первого уравнения системы: х = 5 - 3у.<br>'''2) ''' Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.<br>'''3) ''' Решим полученное уравнение: [[Image:Al62.jpg]]<br>'''4)''' Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если [[Image:Al63.jpg]] то [[Image:Al64.jpg]]<br>'''5)''' Пары (2; 1) и [[Image:Al65.jpg]] решения заданной системы уравнений. | + | <br>В этом параграфе мы обсудим три метода решения [[Системы уравнений. Основные понятия|систем уравнений]], более надежные, чем графический метод, который рассмотрели в предыдущем параграфе. |
| | | |
- | '''О тв е т:''' (2; 1); [[Image:Al65.jpg]]<br>'''2. Метод алгебраического сложения'''<br>Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.<br>'''Пример 2.''' Решить систему уравнений [[Image:Al66.jpg]]<br>'''Решение.''' Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: [[Image:Al67.jpg]]<br>Вычтем второе уравнение системы из ее первого уравнения:
| + | <br>'''1. Метод подстановки''' |
| | | |
- | [[Image:Al68.jpg]]<br>В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой: [[Image:Al69.jpg]]<br>Эту систему можно решить методом подстановки. Из второго уравнения находим [[Image:Al610.jpg]] Подставив это выражение вместо у в первое уравнение системы, получим
| + | Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим [[Урок 4. Программа действий. Алгоритм|алгоритмом]] мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4). |
| | | |
- | [[Image:Al611.jpg]]<br>Осталось подставить найденные значения х в формулу [[Image:Al612.jpg]]
| + | Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у. |
| | | |
- | Если х = 2, то [[Image:Al613.jpg]]<br>Таким образом, мы нашли два решения системы: [[Image:Al614.jpg]]
| + | 1. Выразить у через х из одного уравнения системы.<br>2. Подставить полученное выражение вместо у в другое уравнение системы.<br>3. Решить полученное уравнение относительно х.<br>4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.<br>5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге. |
| | | |
- | '''Ответ:''' [[Image:Al615.jpg]]
| + | [[Линейное уравнение с двумя переменными и его график|Переменные]] х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой. |
| | | |
- | '''3. Метод введения новых переменных'''<br>С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.<br>'''Пример 3.''' Решить систему уравнений [[Image:Al616.jpg]]
| + | '''Пример 1.''' Решить систему уравнений |
| | | |
- | '''Решение.''' Введем новую переменную [[Image:Al617.jpg]] Тогда первое уравнение системы можно будет переписать в более простом виде: [[Image:Al618.jpg]] Решим это уравнение относительно переменной t:
| + | [[Image:Al61.jpg|120px|Система уравнений]] |
| | | |
- | [[Image:Al619.jpg]]<br>Оба эти значения удовлетворяют условию [[Image:Al620.jpg]], а потому являются корнями рационального уравнения с переменной t.<br>Но [[Image:Al621.jpg]] значит, либо [[Image:Al622.jpg]] откуда находим, что х = 2у, либо [[Image:Al623.jpg]]<br>Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:<br>х = 2 у; у — 2х.<br>
| + | '''Р е ш е н и е. ''' |
| | | |
- | Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х<sup>2</sup> - у<sup>2</sup> = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений:
| + | 1) Выразим х через у из первого уравнения системы: х = 5 - 3у.<br>2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.<br>3)Решим полученное [[Рівняння з двома змінними та його розв'язок. Презентація уроку|уравнение]]: |
| | | |
- | [[Image:Al624.jpg]] | + | [[Image:Al62.jpg|160px|Система уравнений]]<br>4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если [[Image:Al63.jpg]] то [[Image:Al64.jpg|120px|Уравнение]]<br>5) Пары (2; 1) и [[Image:Al65.jpg]] решения заданной системы уравнений. |
| + | |
| + | О тв е т: (2; 1); [[Image:Al65.jpg]] |
| + | |
| + | <br>'''2. Метод алгебраического сложения''' |
| + | |
| + | Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере. |
| + | |
| + | '''Пример 2.''' Решить систему уравнений |
| + | |
| + | [[Image:Al66.jpg|160px|Система уравнений]]<br>'''Решение.''' |
| + | |
| + | Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: [[Image:Al67.jpg|160px|Система уравнений]]<br>Вычтем второе уравнение системы из ее первого уравнения: |
| + | |
| + | [[Image:Al68.jpg|240px|Система уравнений]]<br>В результате [[Метод алгебраического сложения|алгебраического сложения]] двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой: |
| + | |
| + | [[Image:Al69.jpg|160px|Система уравнений]]<br>Эту систему можно решить методом подстановки. Из второго уравнения находим [[Image:Al610.jpg|Уравнение]] Подставив это выражение вместо у в первое уравнение системы, получим |
| + | |
| + | [[Image:Al611.jpg|240px|Система уравнений]]<br>Осталось подставить найденные значения х в формулу [[Image:Al612.jpg|120px|Формула]] |
| + | |
| + | Если х = 2, то |
| + | |
| + | [[Image:Al613.jpg|320px|Решение]]<br>Таким образом, мы нашли два решения системы: [[Image:Al614.jpg|120px|Решение]] |
| + | |
| + | Ответ: [[Image:Al615.jpg|120px|Ответ]] |
| + | |
| + | |
| + | |
| + | '''3. Метод введения новых переменных''' |
| + | |
| + | С методом введения новой переменной при решении [[Рациональные уравнения|рациональных уравнений]] с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах. |
| + | |
| + | '''Пример 3.''' Решить систему уравнений |
| + | |
| + | [[Image:Al616.jpg|120px|Система уравнений]] |
| + | |
| + | '''Решение.''' Введем новую переменную [[Image:Al617.jpg]] Тогда первое уравнение системы можно будет переписать в более простом виде: [[Image:Al618.jpg|120px|Уравнение]] Решим это уравнение относительно переменной t: |
| + | |
| + | [[Image:Al619.jpg|160px|Решение]]<br>Оба эти значения удовлетворяют условию [[Image:Al620.jpg]], а потому являются корнями рационального уравнения с переменной t. Но [[Image:Al621.jpg]] значит, либо [[Image:Al622.jpg]] откуда находим, что х = 2у, либо [[Image:Al623.jpg]]<br>Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения: |
| + | |
| + | х = 2 у; у — 2х.<br> |
| + | |
| + | Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х<sup>2</sup> - у<sup>2</sup> = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух [[Системи рівнянь з двома змінними. Графічний спосіб розв’язання систем рівнянь з двома змінними|систем уравнений]]: |
| + | |
| + | [[Image:Al624.jpg|240px|Система уравнений]] |
| | | |
| Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений: | | Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений: |
| | | |
- | [[Image:Al625.jpg]]<br>Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим [[Image:Al626.jpg]]<br>Так как х = 2у, то находим соответственно х<sub>1</sub> = 2, х<sub>2</sub> = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений: [[Image:Al627.jpg]]<br>Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим [[Image:Al628.jpg]]<br>Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.<br>'''Ответ:''' (2; 1); (-2;-1).<br>Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. '''''Первый вариант:''''' вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.'''''Второй вариант:''''' вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.<br>'''Пример 4.''' Решить систему уравнений [[Image:al629.jpg]] | + | [[Image:Al625.jpg|120px|Система уравнений]]<br>Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим |
| | | |
- | '''Решение.''' Введем две новые переменные: [[Image:al630.jpg]] Учтем, что тогда [[Image:al631.jpg]]
| + | [[Image:Al626.jpg|160px|Система уравнений]]<br>Так как х = 2у, то находим соответственно х<sub>1</sub> = 2, х<sub>2</sub> = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений: |
| | | |
- | Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:
| + | [[Image:Al627.jpg|120px|Система уравнений]]<br>Снова воспользуемся [[Метод подстановки|методом подстановки]]: подставим выражение 2х вместо у во второе уравнение системы. Получим |
| | | |
- | [[Image:al632.jpg]]<br>Применим для решения этой системы метод алгебраического сложения: | + | [[Image:Al628.jpg|120px|Решение]]<br>Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы. |
| | | |
- | [[Image:al633.jpg]]<br>Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:
| + | Ответ: (2; 1); (-2;-1). |
| | | |
- | [[Image:al634.jpg]]<br>Возвращаясь к переменным х и у, получаем систему уравнений
| + | Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4. |
| | | |
- | [[Image:al635.jpg]]<br>Применим для решения этой системы метод алгебраического сложения: [[Image:al636.jpg]]<br>Так как [[Image:al637.jpg]] то из уравнения 2x + y = 3 находим: [[Image:al638.jpg]]<br>Таким образом, относительно переменных хиу мы получили одно решение: [[Image:al639.jpg]]<br>'''Ответ:''' [[Image:al640.jpg]]<br>Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.<br>'''Определение.''' Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.<br>Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.<br>
| + | '''Пример 4.''' Решить систему уравнений |
| | | |
- | <br>
| + | [[Image:Al629.jpg|160px|Система уравнений]] |
| | | |
- | А.Г. Мордкович Алгебра 9 класс | + | '''Решение.''' |
| + | |
| + | Введем две новые переменные: |
| + | |
| + | [[Image:Al630.jpg|160px|Решение]] |
| + | |
| + | Учтем, что тогда |
| + | |
| + | [[Image:Al631.jpg|160px|Система уравнений]] |
| + | |
| + | Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b: |
| + | |
| + | [[Image:Al632.jpg|120px|Система уравнений]]<br>Применим для решения этой системы метод алгебраического сложения: |
| + | |
| + | [[Image:Al633.jpg|120px|Система уравнений]]<br>Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение: |
| + | |
| + | [[Image:Al634.jpg|Решение]]<br>Возвращаясь к переменным х и у, получаем систему уравнений |
| + | |
| + | [[Image:Al635.jpg|240px|Система уравнений]]<br>Применим для решения этой системы метод алгебраического сложения: |
| + | |
| + | [[Image:Al636.jpg|120px|Решение]]<br>Так как [[Image:Al637.jpg]] то из уравнения 2x + y = 3 находим: [[Image:Al638.jpg|240px|Решение]]<br>Таким образом, относительно переменных х и у мы получили одно решение: |
| + | |
| + | [[Image:Al639.jpg|80px|Решение]]<br>'''Ответ:''' [[Image:Al640.jpg|80px|Ответ]]<br>Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, [[Иррациональные уравнения|иррациональных]]. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений. |
| + | |
| + | '''Определение.''' |
| + | |
| + | Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений. |
| + | |
| + | Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.<br> |
| + | |
| + | ''<br>'' |
| + | |
| + | ''А.Г. Мордкович [http://xvatit.com/vuzi/ Алгебра] 9 класс'' |
| | | |
| <br> | | <br> |
Строка 52: |
Строка 128: |
| | | |
| '''<u>Содержание урока</u>''' | | '''<u>Содержание урока</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] конспект урока ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] конспект урока ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] опорный каркас | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] опорный каркас |
- | [[Image:1236084776 kr.jpg|10x10px]] презентация урока | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] презентация урока |
- | [[Image:1236084776 kr.jpg|10x10px]] акселеративные методы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] акселеративные методы |
- | [[Image:1236084776 kr.jpg|10x10px]] интерактивные технологии | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] интерактивные технологии |
| | | |
| '''<u>Практика</u>''' | | '''<u>Практика</u>''' |
- | [[Image:1236084776 kr.jpg|10x10px]] задачи и упражнения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] задачи и упражнения |
- | [[Image:1236084776 kr.jpg|10x10px]] самопроверка | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] самопроверка |
- | [[Image:1236084776 kr.jpg|10x10px]] практикумы, тренинги, кейсы, квесты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] практикумы, тренинги, кейсы, квесты |
- | [[Image:1236084776 kr.jpg|10x10px]] домашние задания | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] домашние задания |
- | [[Image:1236084776 kr.jpg|10x10px]] дискуссионные вопросы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] дискуссионные вопросы |
- | [[Image:1236084776 kr.jpg|10x10px]] риторические вопросы от учеников | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] риторические вопросы от учеников |
- |
| + | |
| '''<u>Иллюстрации</u>''' | | '''<u>Иллюстрации</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] аудио-, видеоклипы и мультимедиа ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] аудио-, видеоклипы и мультимедиа ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] фотографии, картинки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фотографии, картинки |
- | [[Image:1236084776 kr.jpg|10x10px]] графики, таблицы, схемы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] графики, таблицы, схемы |
- | [[Image:1236084776 kr.jpg|10x10px]] юмор, анекдоты, приколы, комиксы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] юмор, анекдоты, приколы, комиксы |
- | [[Image:1236084776 kr.jpg|10x10px]] притчи, поговорки, кроссворды, цитаты | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] притчи, поговорки, кроссворды, цитаты |
| | | |
| '''<u>Дополнения</u>''' | | '''<u>Дополнения</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] рефераты''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] рефераты''' |
- | [[Image:1236084776 kr.jpg|10x10px]] статьи | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] статьи |
- | [[Image:1236084776 kr.jpg|10x10px]] фишки для любознательных | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] фишки для любознательных |
- | [[Image:1236084776 kr.jpg|10x10px]] шпаргалки | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] шпаргалки |
- | [[Image:1236084776 kr.jpg|10x10px]] учебники основные и дополнительные | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] учебники основные и дополнительные |
- | [[Image:1236084776 kr.jpg|10x10px]] словарь терминов | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] словарь терминов |
- | [[Image:1236084776 kr.jpg|10x10px]] прочие | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] прочие |
| | | |
| <u>Совершенствование учебников и уроков | | <u>Совершенствование учебников и уроков |
- | </u>'''[[Image:1236084776 kr.jpg|10x10px]] исправление ошибок в учебнике''' | + | </u>'''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] исправление ошибок в учебнике''' |
- | [[Image:1236084776 kr.jpg|10x10px]] обновление фрагмента в учебнике | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обновление фрагмента в учебнике |
- | [[Image:1236084776 kr.jpg|10x10px]] элементы новаторства на уроке | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] элементы новаторства на уроке |
- | [[Image:1236084776 kr.jpg|10x10px]] замена устаревших знаний новыми | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] замена устаревших знаний новыми |
- |
| + | |
| '''<u>Только для учителей</u>''' | | '''<u>Только для учителей</u>''' |
- | '''[[Image:1236084776 kr.jpg|10x10px]] идеальные уроки ''' | + | '''[[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] идеальные уроки ''' |
- | [[Image:1236084776 kr.jpg|10x10px]] календарный план на год | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] календарный план на год |
- | [[Image:1236084776 kr.jpg|10x10px]] методические рекомендации | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] методические рекомендации |
- | [[Image:1236084776 kr.jpg|10x10px]] программы | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] программы |
- | [[Image:1236084776 kr.jpg|10x10px]] обсуждения | + | [[Image:1236084776 kr.jpg|10x10px|1236084776 kr.jpg]] обсуждения |
| | | |
| | | |
Версия 07:07, 10 октября 2012
Гипермаркет знаний>>Математика>>Математика 9 класс>>Математика: Методы решения систем уравнений
Методы решения систем уравнений
В этом параграфе мы обсудим три метода решения систем уравнений, более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.
1. Метод подстановки
Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).
Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.
1. Выразить у через х из одного уравнения системы. 2. Подставить полученное выражение вместо у в другое уравнение системы. 3. Решить полученное уравнение относительно х. 4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге. 5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.
Переменные х и у, разумеется, равноправны, поэтому с таким же успехом мы можем на первом шаге алгоритма выразить не у через х, а х через у из одного уравнения. Обычно выбирают то уравнение, которое представляется более простым, и выражают ту переменную из него, для которой эта процедура представляется более простой.
Пример 1. Решить систему уравнений
Р е ш е н и е.
1) Выразим х через у из первого уравнения системы: х = 5 - 3у. 2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2. 3)Решим полученное уравнение:
4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если то 5) Пары (2; 1) и решения заданной системы уравнений.
О тв е т: (2; 1);
2. Метод алгебраического сложения
Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.
Пример 2. Решить систему уравнений
Решение.
Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: Вычтем второе уравнение системы из ее первого уравнения:
В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:
Эту систему можно решить методом подстановки. Из второго уравнения находим Подставив это выражение вместо у в первое уравнение системы, получим
Осталось подставить найденные значения х в формулу
Если х = 2, то
Таким образом, мы нашли два решения системы:
Ответ:
3. Метод введения новых переменных
С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.
Пример 3. Решить систему уравнений
Решение. Введем новую переменную Тогда первое уравнение системы можно будет переписать в более простом виде: Решим это уравнение относительно переменной t:
Оба эти значения удовлетворяют условию , а потому являются корнями рационального уравнения с переменной t. Но значит, либо откуда находим, что х = 2у, либо Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:
х = 2 у; у — 2х.
Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х2 - у2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений:
Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:
Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим
Так как х = 2у, то находим соответственно х1 = 2, х2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:
Снова воспользуемся методом подстановки: подставим выражение 2х вместо у во второе уравнение системы. Получим
Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.
Ответ: (2; 1); (-2;-1).
Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.
Пример 4. Решить систему уравнений
Решение.
Введем две новые переменные:
Учтем, что тогда
Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:
Применим для решения этой системы метод алгебраического сложения:
Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:
Возвращаясь к переменным х и у, получаем систему уравнений
Применим для решения этой системы метод алгебраического сложения:
Так как то из уравнения 2x + y = 3 находим: Таким образом, относительно переменных х и у мы получили одно решение:
Ответ: Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных. Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.
Определение.
Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.
Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.
А.Г. Мордкович Алгебра 9 класс
Материалы по математике онлайн, задачи и ответы по классам, планы конспектов уроков по математике скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|