KNOWLEDGE HYPERMARKET


Приймачі випромінювання. Застосування в телескопобудуванні досягнень техніки і технологій.

Гіпермаркет Знань>>Фізика і астрономія>>Астрономія 12 клас>>Астрономія: Приймачі випромінювання. Застосування в телескопобудуванні досягнень техніки і технологій.

Астрономічні обсерваторії. Упродовж тривалого часу заняття астрономією було ледь не приватною справою окремих ентузіастів. Але в XVII ст. було усвідомлено її значення для потреб географії та мореплавання. Розпочалось будівництво перших державних астрономічних обсерваторій (АО): Паризької (1671 р.), Гринвіцької (1675 р.) тощо.


В наш час у світі налічують близько 400 АО. В Україні провідними є Головна астрономічна обсерваторія НАН України (1944 р.), Інститут радіоастрономії з його унікальним декаметровим телескопом УТР-2 під Харковом, Кримська астрофізична обсерваторія (1950 р.). Певні традиції досліджень і спостережень зберігають АО університетів -Львівського (1769 р.), Харківського (1898 р.), Київського (1845 р.), Одеського (1871 р.).


Довгий час АО будувались поблизу чи навіть у населених пунктах, з XIX ст. їх почали розташовувати на гірських вершинах. Серед найбільших АО світу найвідомішими сьогодні є: введена в дію 1990 р. АО на вершині древньої вулканічної гори Мауна-Кеа (4215 м, о. Гавані), оголошеної науковим заповідником за свій унікальний аст-роклімат; тут встановлено кілька 4-метрових телескопів, а також телескопи «Кек», «Джеміні», «Субару» (мал. 11.6); англійська АО на о. Ла-Пальма (2327 м, 1986 р.), американська АО Лас-Кампанас (2280 м, 1976 р.) у Чилі і там же європейська АО Ла-Сілла (2347 м, 1976 р.), де встановлено «Дуже великий телескоп».


В останні роки не менше половини наукових публікацій з астрономії грунтуються на спостереженнях небесних об'єктів із стратостатів, штучних супутників Землі, орбітальних космічних станцій та автоматичних міжпланетних станцій (АМС). В космосі працює ціла низка інфрачервоних, ультрафіолетових, рентгенівських, гамма-обсерваторій, які досліджують небо у всіх діапазонах електромагнітних хвиль, наприклад рентгенівська обсерваторія «Чандра». Важливою для астрономів подією був запуск 25 квітня 1990 р. на орбіту висотою 612 км «Космічного телескопа ім. Габбла» (мал. на стор. 51) з діаметром дзеркала 2,4 м, який вирішує велику кількість астрофізичних задач. Загалом з 1962 р. для астрономічних досліджень запущено близько 50 ШСЗ та АМС.


Радіотелескопи і радіоінтерферометри. Радіовипромінювання від космічних об'єктів приймається спеціальними установками, які називаються радіотелескопами (РТ). Сучасні радіотелескопи досліджують космічні радіохвилі в довжинах від одного міліметра до декількох десятків метрів.


Основними складовими частинами типового радіотелескопа є антена і дуже чутливий приймач. Антени РТ, які приймають міліметрові, сантиметрові, декаметрові та метрові хвилі — це найчастіше параболічні відбивачі, подібні до дзеркал звичайних оптичних рефлекторів. У фокусі параболоїда встановлюється опромінювач — пристрій, який збирає радіовипромінювання, направлене на нього дзеркалом. Опромінювач передає прийняту енергію на вхід приймача, і після підсилення та виділення заданої частоти сигнал реєструється на стрічці самописного електричного приладу. Сучасні підсилювачі дають змогу виявляти (розрізняти) радіосигнали, що виникають при змінах температури всього на 0,001 К.


Радіоастрономічні дзеркала не вимагають такої точності виготовлення, як оптичні. Щоб дзеркало не спотворювало зображень, його відхилення від заданої параболічної форми не повинно перевищувати 1/8 довжини хвилі, яку він приймає. Наприклад, для довжини хвилі 10 см досить мати точність дзеркала близько 1 см. Більше того, дзеркало РТ можна робити не суцільним: досить натягнути металеву сітку на каркас, який надає йому параболічної форми. Нарешті, РТ можна зробити нерухомим, якщо замінити поворот дзеркала зміщенням опромінювача. Завдяки таким особливостям РТ можуть набагато перевищувати оптичні телескопи у розмірах.


Найбільша у світі радіоастрономічна антена, встановлена у кратері згаслого вулкана Аресібо на острові Пуерто-Ріко, має діаметр
305 м. Нерухома антена, спрямована в зеніт, не дозволяє приймати радіохвилі з будь-якої точки неба, але завдяки добовому обертанню Землі і можливості зміщувати опромінювач більша частина небесної сфери доступна для спостережень.
Інші найбільші радіотелескопи з параболічною антеною встановлено: в Радіоастрономічному інституті ім. М. Планка (Еффельсберг, ФРН) — діаметр антени 100 м, в обсерваторії Грін Бенк у штаті Вірджинія (США) — антена 110x100 м, а також 76-метровий РТ в обсерваторії Джодрел Бенк (Англія), 64-метровий РТ в обсерваторії Парке (Австралія), 22-метровий РТ недалеко від Євпаторії в Криму (мал. 11.7, на стор. 58). Усі вони легко спрямовуються в задану точку неба поворотом навколо двох осей — вертикальної (встановлюється азимут об'єкта) і горизонтальної (установка висоти об'єкта). В подальшому ЕОМ безперервно подає сигнали керуючим пристроям, які ведуть РТ услід за об'єктом при його зміщенні, зумовленому добовим обертанням небесної сфери.


Радіотелескопи дуже великих розмірів можуть бути побудовані з великої кількості окремих дзеркал, що фокусують випромінювання на один опромінювач. Прикладом є РАТАН-600 («радіотелескоп Академії наук, діаметр 600 м»), встановлений поблизу станиці Зеленчук на Північному Кавказі неподалік від 6-метрового оптичного телескопа. Він являє собою замкнене кільце діаметром 600 м і складається з 900 плоских дзеркал розмірами 2x7,4 м, що утворюють сегмент параболоїда. В такому РТ може працювати як усе кільце, так і його частина.


На довжинах хвиль від кількох метрів і більше параболічна антена не застосовується, замість неї використовують системи з великої кількості плоских дипольних антен, електричний зв'язок між якими забезпечує необхідну для РТ спрямованість прийому. Саме за таким принципом побудовано найбільший у світі радіотелескоп декаметрового діапазону УТР-2, розташований під Харковом.

Використовуючи відоме у фізиці явище інтерференції, дослідники розробили методи радіоінтерферометричних спостережень з використанням двох різних приймачів. Об'єднуючи декілька РТ, будують так звані радіоінтерферометри (РІ).


На сьогодні найвідомішим РІ є введений у дію 1980 р. РТ УВА («Дуже велика гратка»), який встановлено в пустельній місцевості штату Нью-Мексико, СІЛА. Цей РТ складається з 27 повноповоротних 25-метрових параболічних антен, розміщених у формі літери У з довжиною двох плечей по 21 км, а третього — 19 км. У цьому і аналогічних   випадках   антени пов'язані між собою електричними лініями.


Розроблено також методи наддалекої радіоінтерферометрії, коли використовують попарно великі антени, розташовані на відстанях до 12 000 км. З допомогою таких систем в радіоастрономії вдалось отримати кутове розділення дуже тісних об'єктів порядку 0,0001", що набагато краще, ніж дають оптичні телескопи (для порівняння: кутова роздільна здатність людського ока - 2'). З 1979 р. однією з антен інтерферометра є РТ, виведений супутником на орбіту Землі. Завдяки радіоінтерферометрам вдається вивчати структуру далеких радіоджерел.

Телескопи для спостережень у високоенергетичних діапазонах електромагнітних хвиль. Оскільки земна атмосфера затримує електромагнітні хвилі, коротші за 300 нм, всі приймачі ультрафіолетових, рентгенівських та гамма-променів доводиться виносити за її межі. Значну частину досліджень в ультрафіолеті від 300 нм до 120 нм здійснено за допомогою звичайних телескопів з дзеркалами, покритими алюмінієм, для ще коротших хвиль використовують дзеркала, покриті тонким шаром фтористого магнію, та добре відомі лічильники Гейгера-Мюллера. Особливі труднощі виникають при спостереженнях рентгенівського випромінювання з довжиною хвиль від 0,01 нм до 1 нм.

Сучасні методи полірування та шліфування матеріалів не дозволяють виготовити дзеркало з такою високою точністю. Однак виявляється, що при падінні і відбиванні променя під дуже малим кутом до дзеркала вимоги до точності його виготовлення значно послаблюються. Такий телескоп є поєднанням двох дзеркал - параболоїда обертання і гіперболоїда обертання, відбивні поверхні яких покриті шаром хрому і нікелю. Промінь відбивається від першого дзеркала під кутом лише Г до відбивної поверхні, потрапляє на друге дзеркало, а після цього - у фокальну площину, де й будується зображення, скажімо, Сонця. Усі ж інші промені, що йдуть ближче до головної осі дзеркала, затримуються діафрагмою (непрозорим екраном).


В гамма-діапазоні пристроєм для реєстрації квантів слугують детектори (з лат. — «той, що виявляє»). їх встановлюють у глибоких (до 1 500 м) шахтах, у тунелях, прокладених у надрах гір (як-от Ельбрус, Монблан), на дні великих озер, щоб істотно зменшити побічні ефекти.


1. Які спектральні діапазони традиційно виділяють в астрономії? Яку назву отримали відповідні розділи астрономії?

2. Що таке космічні промені?

3. Які типи телескопів використовують в астрономії і хто першим сконструював кожен із них?

4. Де розташовано найбільші телескопи?

5. Що таке радіоінтерферометр і за яким принципом він збудований?

5.1. Знайдіть на картах «Атласу світу» розташування найголовніших астрономічних обсерваторій: Мауна-Кеа (X = _155°29', Y = 19°50'), Лас-Кампанас (X = -7042', Y = -29°00'). Ла-Сілла (А. = -70 44'. Y = -29°15'). гора Пастухова (X = 4Г26', Y = 43°39'), Маунт Паломар (X = -118°04 Y = 34"13').


Випромінювання: приймання та аналіз
1. Величини потоків випромінювання. Інформацію про явища і процеси, що відбуваються у навколишньому Всесвіті, астрономи отримують шляхом реєстрації електромагнітного випромінювання, яке приходить від космічних об'єктів. Досі ми розглядали його як електромагнітні хвилі певної довжини (або частоти), але можна уявити його і як частинки, які називаються фотонами.

Від Сонця на кожний квадратний метр земної поверхні, перпендикулярної до сонячних променів, в середньому надходить енергія
9 = 1370 Вт/м2. Середня частота цього випромінювання V = 6 • 10й Гц. Таким чином, середня енергія одного кванта становить Н\ = 4 • 10 19 Дж. За одну секунду на площу 1 м2 від Сонця надходить 1370 / (4 • 10"19) = 3,4 • 1021 квантів електромагнітного випромінювання.


Як відомо, потік енергії через вибрану площу змінюється обернено пропорційно квадрату відстані до джерела. Відстані до найближчих зір у середньому майже у 300 000 разів перевищують відстань до Сонця. Якби Сонце знаходилося на такій відстані, ми б отримували від нього лише 4,1 • 106 квант/см2 за секунду. Найвідоміша галактика Туманність Андромеди знаходиться від нас на відстані 2,3 млн/св.р., це майже в 1,5 • 101П разів далі, ніж Сонце. Нехай у ній знаходиться 200 млрд. таких сонць, як наше. Отже, від неї маємо потік квантів 3,1 • 106 квант/см2 за секунду. Від такої ж галактики з відстані в 2 млрд/св.р. отримаємо лише 3 квант/см2 за секунду, а з відстані в 10 млрд/св.р. — 1 квант/см2 за 10 секунд.


Ось чому для вивчення явищ і процесів, що відбуваються в таких далеких об'єктах, потрібні потужні телескопи і надчутливі реєструючі пристрої. Ми вже знаємо (§ 3), що освітленості від небесних світил оцінюють у зоряних величинах.


Зокрема, у телескоп з діаметром дзеркала 6 м можна бачити зорі до 22 ш. Світловий потік від таких зір у 2,5 млн. разів менший, ніж від найслабкішої зорі, яку ми ще бачимо неозброєним оком.


Приймачі випромінювання. З 1880 р. в астрономії систематично використовують фотографію. У наш час понад 50% усіх астрономічних спостережень здійснюють саме шляхом фотографування небесних об'єктів. Фотографічна емульсія, на відміну від ока, здатна накопичувати кванти світла, на ній водночас утворюються зображення сотень і тисяч світил. Такі зображення певної ділянки неба чи об'єкта можуть зберігатися багато років. У наш час небо фотографують на кольорову емульсію, що дає змогу, зокрема, виявляти особливості структури газових туманностей тощо.

Але за межами земної атмосфери такий же телескоп здатний вловлювати сигнали від об'єктів, у 40 разів слабкіших (до 28га).
З 40-х років XX ст. успішно використовують фотоелектронні помножувачі, в яких потік фотонів, що надходить від небесного світила, перетворюється в електричний струм. Фотоелектронний помножувач (ФЕП) - це скляний прозорий балон, у якому створено вакуум і в який вмонтовані фотокатод, емітери або диноди - загальною кількістю до двох десятків - і анод. Усі вони мають виводи, на які подаються все зростаючі електричні потенціали. Електрон, вирваний внаслідок фотоефекту з фотокатода, прискорюється в електричному полі, вдаряється об поверхню першого емітера і вибиває з нього декілька електронів, які, у свою чергу, рухаються в напрямку другого емітера, вдаряються об нього і вибивають ще більше електронів і т.д.


У підсумку кількість електронів, що потрапляють на анод, буде у 106-109 разів більшою від початкової кількості, вирваної з катода.


З початку 70-х років в астрономії застосовують приймачі, дія яких грунтується на притаманному всім напівпровідникам явищі внутрішнього фотоефекту. Для зниження шумів прилад охолоджують до температури рідкого азоту (77 К). Одним із варіантів таких фотоприймачів є прилади із зарядовим зв'язком (ПЗЗ, англомовна абревіатура ССБ). Тут електрони, що вивільнилися при поглинанні речовиною фотонів, зберігаються в окремих елементах кремнієвої кристалічної пластинки - в пікселах, а зчитувальний пристрій підраховує і реєструє величину нагромадженого реального заряду.


Завдяки застосуванню ПЗЗ гранична зоряна величина, яку, зокрема, можна зареєструвати на 5-метровому рефлекторі, зросла з 25"' до 28"', тобто стало можливим реєструвати потоки в 16 разів слабкіші, ніж раніше. Щоб досягти такого прогресу зі старими (фотографічними) приймачами, довелося б побудувати оптичний телескоп з діаметром дзеркала 31 м.


Допоміжні прилади. Саме по собі зображення об'єкта, отримане у фокусі телескопа, особливо якщо це далека зоря, не несе важливої інформації, яка б розкривала його природу. Для того щоб отримати цю інформацію, астрономи використовують найрізноманітніші допоміжні прилади. Найвідомішими серед них є спектрографи. Вивчаючи спектри космічних тіл, можна дізнатися про хімічний склад, температуру, наявність і величини електричних та магнітних полів цих об'єктів, швидкість їхнього руху в просторі тощо.


Дуже часто спостереження проводять із застосуванням світлофільтрів, за допомогою яких виділяють випромінювання об'єктів в окремих діапазонах спектра.


Сконструйовано електронно-оптичні перетворювачі (ЕОП), завдяки яким інфрачервоне зображення трансформується у видиме. Найпростіший ЕОП нагадує однокаскадний фотопомножувач, у якому анод виготовлено у вигляді циліндричної трубки, що виконує функції фокусуючої системи. Фотоелектрони вільно проходять крізь неї і, потрапляючи на екран, покритий люмінофором (сульфідом цинку чи кадмію), різко гальмуються. При цьому екран починає світитися (флуоресціювати). В такий спосіб електронне зображення перетворюється у світлове, яке потім фотографують.


З 1950-х років в астрономії використовують телевізійний метод спостережень слабких об'єктів, що дає великий виграш у часі. Цей метод дозволяє значно посилювати слабкі за яскравістю об'єкти, передавати їхні зображення від телескопа в лабораторне приміщення, збільшувати масштаб зображення, його контрастність і яскравість, розглядати це зображення або фотографувати його.


Завдяки телевізійному методу з'явилася спекл-інтерферометрія -метод отримування моментального зображення об'єкта (за декілька сотих часток секунди), діаметр якого близький до дифракційного. Тим самим усувається ефект розсіювання світлових променів на неод-норідностях земної атмосфери, а тому можна не лише виявляти подвійність окремих астрономічних об'єктів, а й оцінювати головні параметри таких систем.


Найрізноманітніші допоміжні пристрої та методи реєстрації енергії розроблено для позаоптичних діапазонів спектра. Опишемо коротко принцип роботи нейтринного телескопа, тобто детектора нейтрино, які приходять до Землі від Сонця та інших зір.

У 1967 р. в СІЛА на глибині 1 490 м було змонтовано установку (горизонтальний циліндричний бак довжиною близько 14 м і діаметром 6 м), що містить 400 000 л (615 т) С2С14. Після кожних 100 днів роботи через нього пропускають 20 000 л газоподібного гелію, який захоплює з собою ізотопи 37Аг. Далі у вугільних фільтрах атоми аргону поглинаються, їхній розпад і реєструється лічильниками.


Інші нейтринні детектори змонтовано, зокрема, у шахтах з видобування золота на глибині 3 км у Південно-Африканській Республіці та на глибині 2 км у Південній Індії. Нейтринну обсерваторію збудовано у надрах гори Андирчі неподалік від Ельбруса в Ка-бардино-Балкарії.


Слід також відзначити найбільші японські нейтринні детектори, встановлені за 200 км від Токіо: «Каміоканде» та «Суперкаміоканде» з чутливістю, у 100 разів вищою від попереднього. Останній можна по праву назвати нейтринним телескопом, адже з його допомогою одержано перше нейтринне зображення Сонця.


1. Яку роль відіграють телескопи в астрономії?

2 У чому принципова різниця між фотографічними і фотоелектричним методами спостережень?

3.* Як працює електронно-оптичний перетворювач?

4.* Що таке детектор нейтрино?


11.1. За даними курсу фізики накресліть схему призмового спектрографа, з'ясовуючи роль кожного з його складових елементів. 11.2.* З'ясуйте, що отримає спостерігач, встановивши тригранну призму перед об'єктивом рефрактора.


Астрономія сьогодні - це всехвильова наука, яка досліджує небесні світила не лише за допомогою видимого людським оком світла.


Основне призначення телескопа — зібрати більше світла і збільшити кут зору, під яким спостерігається те чи інше світило.
Оптичні телескопи бувають лінзові (рефрактори) і дзеркальні (рефлектори).


В сучасній астрономії використовують, окрім оптичних, також інші телескопи: радіотелескопи, інфрачервоні тощо,
як наземні, так і орбітальні.


Астрономічна обсерваторія —це науковий центр, де за допомогою телескопів спостерігають небесні об'єкти.

Астрономія 11 кл. І.Климишин, І.Крячко
Вислано читачами інтернет-сайту


Скачати тести з астрономії 12 клас, домашні завдання з астрономії, конспекти уроків з усіх предметів


Зміст уроку
1236084776 kr.jpg конспект уроку і опорний каркас                      
1236084776 kr.jpg презентація уроку 
1236084776 kr.jpg акселеративні методи та інтерактивні технології
1236084776 kr.jpg закриті вправи (тільки для використання вчителями)
1236084776 kr.jpg оцінювання 

Практика
1236084776 kr.jpg задачі та вправи,самоперевірка 
1236084776 kr.jpg практикуми, лабораторні, кейси
1236084776 kr.jpg рівень складності задач: звичайний, високий, олімпійський
1236084776 kr.jpg домашнє завдання 

Ілюстрації
1236084776 kr.jpg ілюстрації: відеокліпи, аудіо, фотографії, графіки, таблиці, комікси, мультимедіа
1236084776 kr.jpg реферати
1236084776 kr.jpg фішки для допитливих
1236084776 kr.jpg шпаргалки
1236084776 kr.jpg гумор, притчі, приколи, приказки, кросворди, цитати

Доповнення
1236084776 kr.jpg зовнішнє незалежне тестування (ЗНТ)
1236084776 kr.jpg підручники основні і допоміжні 
1236084776 kr.jpg тематичні свята, девізи 
1236084776 kr.jpg статті 
1236084776 kr.jpg національні особливості
1236084776 kr.jpg словник термінів                          
1236084776 kr.jpg інше 

Тільки для вчителів
1236084776 kr.jpg ідеальні уроки 
1236084776 kr.jpg календарний план на рік 
1236084776 kr.jpg методичні рекомендації 
1236084776 kr.jpg програми
1236084776 kr.jpg обговорення



Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.