Гипермаркет знаний>>Физика и астрономия>>Физика 9 класс>>Физика: Электрическое поле
Подвесим на нити заряженную гильзу и поднесем к ней наэлектризованную стеклянную палочку. Даже при отсутствии непосредственного контакта гильза на нити отклоняется от вертикального положения, притягиваясь к палочке (рис. 13). Заряженные тела, как видим, способны взаимодействовать друг с другом на расстоянии. Как при этом передается действие от одного из этих тел к другому? Может быть, все дело в воздухе, находящемся между ними? Выясним это на опыте.Поместим заряженный электроскоп (с вынутыми стеклами) под колокол воздушного насоса, после чего выкачаем из-под него воздух. Мы увидим, что и в безвоздушном пространстве листочки электроскопа по-прежнему будут отталкиваться друг от друга (рис. 14). Значит, в передаче электрического взаимодействия воздух не участвует. Тогда посредством чего все-таки осуществляется взаимодействие заряженных тел? Ответ на этот вопрос дали в своих работах английские ученые М. Фарадей (1791-1867) и Дж. Максвелл (1831-1879). Согласно учению Фарадея и Максвелла, пространство, окружающее заряженное тело, отличается от пространства, находящегося вокруг ненаэлектризованных тел. Вокруг заряженных тел существует электрическое поле. С помощью этого поля и осуществляется электрическое взаимодействие. Электрическое поле представляет собой особый вид материи, отличающийся от вещества и существующий вокруг любых заряженных тел. Ни увидеть его, ни потрогать невозможно. О существовании электрического поля можно судить лишь по его действиям. Простые опыты позволяют установить основные свойства электрического поля. 1. Электрическое поле заряженного тела действует с некоторой силой на всякое другое заряженное тело, оказавшееся в этом поле. Об этом свидетельствуют все опыты по взаимодействию заряженных тел. Так, например, заряженная гильза, оказавшаяся в электрическом поле наэлектризованной палочки (см. рис. 13), подверглась действию силы притяжения к ней. 2. Вблизи заряженных тел создаваемое ими поле сильнее, а вдали слабее. Чтобы убедиться в этом, снова обратимся к опыту с заряженной гильзой (см. рис. 13). Начнем приближать подставку с гильзой к заряженной палочке. Мы увидим, что по мере приближения гильзы к палочке угол отклонения нити от вертикали будет становиться все больше и больше (рис. 15). Увеличение этого угла свидетельствует о том, что, чем ближе гильза к источнику электрического поля (наэлектризованной палочке), тем с большей силой действует на нее это поле. Это и означает, что вблизи заряженного тела создаваемое им поле сильнее, чем вдали. Следует иметь в виду, что не только заряженная палочка своим электрическим полем действует на заряженную гильзу, но и гильза, в свою очередь, своим электрическим полем действует на палочку. В таком взаимном действии друг на друга и проявляется электрическое взаимодействие заряженных тел. Электрическое поле проявляется и в опытах с диэлектриками. Когда диэлектрик оказывается в электрическом поле, положительно заряженные части его молекул (атомные ядра) под действием поля смещаются в одну сторону, а отрицательно заряженные части (электроны) - в другую сторону. Это явление называют поляризацией диэлектрика. Именно поляризацией объясняются простейшие опыты по притяжению наэлектризованным телом легких кусочков бумаги. Эти кусочки в целом нейтральны. Однако в электрическом поле наэлектризованного тела (например, стеклянной палочки) они поляризуются. На той поверхности кусочка, что ближе к палочке, появляется заряд, противоположный по знаку заряду палочки. Взаимодействие с ним и приводит к притяжению кусочков бумаги к наэлектризованному телу. Силу, с которой электрическое поле действует на заряженное тело (или частицу), называют электрической силой: Fэл - электрическая сила. Под действием этой силы частица, оказавшаяся в электрическом поле, приобретает ускорение а, которое можно определить с помощью второго закона Ньютона: где m - масса данной частицы. Со времен Фарадея для графического изображения электрического поля принято использовать силовые линии. Силовые линии электрического поля - это линии, указывающие направление силы, действующей в этом поле на помещаемую в него положительно заряженную частицу. Силовые линии поля, создаваемого положительно заряженным телом, показаны на рисунке 16, а. На рисунке 16, б изображены силовые линии поля, создаваемого отрицательно заряженным телом. Подобную картину можно наблюдать с помощью простого устройства, называемого электрическим султаном. Сообщив ему заряд, мы увидим, как все его бумажные полоски разойдутся в разные стороны и расположатся вдоль силовых линий электрического поля (рис. 17). Когда заряженная частица попадает в электрическое поле, ее скорость в этом поле может как увеличиться, так и уменьшиться. Если заряд частицы q>0, то при движении вдоль силовых линий она будет разгоняться, а при движении в противоположном направлении тормозить. Если же заряд частицы q<0, то все будет наоборот ее скорость будет уменьшаться при движении в направлении силовых линий и увеличиваться при движении в противоположном направлении.
???
Экспериментальное задание.
Содержание урока Если у вас есть исправления или предложения к данному уроку, напишите нам. Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email: