|
Гіпермаркет Знань>>Інформатика >>Інформатика 9 клас>> Інформатика: Типова архітектура персонального комп'ютера. Класифікація та основні характеристики ПК.
Шпаргалки до предмету Інформатика 9 клас.
Тема «Общие принципы организации и работы компьютеров».
Розгляд теми: Типова архітектура персонального комп'ютера. Класифікація та основні характеристики ПК.
Общие принципы организации и работы компьютеров 2.1. Что такое компьютер? Компьютер (англ. computer — вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами [51]. Существует два основных класса компьютеров: • цифровые компьютеры, обрабатывающие данные в виде двоичных кодов; • аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т.д.), которые являются аналогами вычисляемых величин. Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) — заранее заданных, четко определённых последовательностей арифметических, логических и других операций. Любая компьютерная программа представляет собой последовательность отдельных команд. Команда — это описание операции, которую должен выполнить компьютер. Как правило, у команды есть свой код (условное обозначение), исходные данные (операнды) и результат. Совокупность команд, выполняемых данным компьютером, называется системой команд этого компьютера. На каких принципах построены компьютеры? В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом. 1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”. Таким образом, процессор исполняет программу автоматически, без вмешательства человека. 2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины. 3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен. Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т.е. они могут работать без “счетчика команд”, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя. Такие компьютеры называются не-фон-неймановскими. 2.4. Что такое команда? Команда — это описание элементарной операции, которую должен выполнить компьютер. В общем случае, команда содержит следующую информацию: • код выполняемой операции; • указания по определению операндов (или их адресов); • указания по размещению получаемого результата. В зависимости от количества операндов, команды бывают: • одноадресные; • двухадресные; • трехадресные; • переменноадресные. Команды хранятся в ячейках памяти в двоичном коде. В современных компьютерах длина команд переменная (обычно от двух до четырех байтов), а способы указания адресов переменных весьма разнообразные. В адресной части команды может быть указан, например: • сам операнд (число или символ); • адрес операнда (номер байта, начиная с которого расположен операнд); • адрес адреса операнда (номер байта, начиная с которого расположен адрес операнда), и др. Рассмотрим несколько возможных вариантов команды сложения (англ. add — сложение), при этом вместо цифровых кодов и адресов будем пользоваться условными обозначениями: • одноадресная команда add x (содержимое ячейки x сложить с содержимым сумматора, а результат оставить в сумматоре) add x • • двухадресная команда add x, y (сложить содержимое ячеек x и y, а результат поместить в ячейку y) add x y • • трехадресная команда add x, y, z (содержимое ячейки x сложить с содержимым ячейки y, сумму поместить в ячейку z) add x y z • Что такое архитектура и структура компьютера? При рассмотрении компьютерных устройств принято различать их архитектуру и структуру. Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя. Структура компьютера — это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства — от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации. Наиболее распространены следующие архитектурные решения. • Классическая архитектура (архитектура фон Неймана) — одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд — программа (рис. 2.1). Это однопроцессорный компьютер. К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной, подробно рассмотренная в разделе 2.18 (рис. 2.26). Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью. Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления. Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры — устройства управления периферийными устройствами. Контроллер — устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования. • Многопроцессорная архитектура. Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд. Таким образом, параллельно могут выполняться несколько фрагментов одной задачи. Структура такой машины, имеющей общую оперативную память и несколько процессоров, представлена на рис. 2.3.
Рис. 2.3. Архитектура многопроцессорного компьютера •
Многомашинная вычислительная система. Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе. Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно. • Архитектура с параллельными процессорами. Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе — то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных. Структура таких компьютеров представлена на рис. 2.4.
Рис. 2.4. Архитектура с параллельным процессором Что такое центральный процессор? Центральный процессор (CPU, от англ. Central Processing Unit) — это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера. Центральный процессор в общем случае содержит в себе: • арифметико-логическое устройство; • шины данных и шины адресов; • регистры; • счетчики команд; • кэш — очень быструю память малого объема (от 8 до 512 Кбайт); • математический сопроцессор чисел с плавающей точкой. Современные процессоры выполняются в виде микропроцессоров. Физически микропроцессор представляет собой интегральную схему — тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера. Микропроцессор Intel Pentium 4 — наиболее совершенный и мощный процессор выпуска 2001 г. с тактовой частотой до 2 Гигагерц, представлен на рисунке 2.5 примерно в натуральную величину. Он предназначен для работы приложений, требующих высокой производительности процессора, таких, как передача видео и звука по Интернет, создание видео-материалов, распознавание речи, обработка трехмерной графики, игры.
Надіслав вчитель інформатики Савков М.В.
Матеріали з інформатики за 9 клас скачати, конспект з інформатики, підручники та книги скачати безкоштовно, шкільна програма онлайн
Предмети > Інформатика > Інформатика 9 клас > Типова архітектура персонального комп'ютера. Класифікація та основні характеристики ПК > Типова архітектура персонального комп'ютера. Класифікація та основні характеристики ПК. Шпаргалки
|