|
|
Строка 3: |
Строка 3: |
| '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 10 класс|Математика 10 класс]]>> Тригонометрические функции углового аргумента''' | | '''[[Гипермаркет знаний - первый в мире!|Гипермаркет знаний]]>>[[Математика|Математика]]>>[[Математика 10 класс|Математика 10 класс]]>> Тригонометрические функции углового аргумента''' |
| | | |
- | <br> '''Тригонометрические функции углового аргумента''' | + | <br> '''Тригонометрические функции углового аргумента''' |
| | | |
- | <br>Термины «синус», «косинус», «'''[[Значения синуса, косинуса и тангенса некоторых углов. Полные уроки|тангенс]]'''» и «котангенс» на самом деле были вам знакомы, правда, использовали вы их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не числа, как это было в предыдущих параграфах). | + | <br>Термины «синус», «косинус», «'''[[Значения синуса, косинуса и тангенса некоторых углов. Полные уроки|тангенс]]'''» и «котангенс» на самом деле были вам знакомы, правда, использовали вы их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не числа, как это было в предыдущих параграфах). |
| | | |
- | Из геометрии известно, что синус (косинус) острого угла — это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла — это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали мы в предыдущих параграфах. На самом деле эти подходы взаимосвязаны, в чем мы сейчас убедимся. | + | Из геометрии известно, что синус (косинус) острого угла — это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла — это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали мы в предыдущих параграфах. На самом деле эти подходы взаимосвязаны, в чем мы сейчас убедимся. |
| | | |
| Возьмем угол с градусной мерой <х° и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 112: вершину угла совместим с центром окружности (с началом системы координат), а одну сторону угла совместим с положительным лучом оси абсцисс. Точку пересечения второй стороны угла с окружностью обозначим буквой М. Ординату точки М естественно считать синусом угла а°, а абсциссу этой точки — косинусом угла а°. | | Возьмем угол с градусной мерой <х° и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 112: вершину угла совместим с центром окружности (с началом системы координат), а одну сторону угла совместим с положительным лучом оси абсцисс. Точку пересечения второй стороны угла с окружностью обозначим буквой М. Ординату точки М естественно считать синусом угла а°, а абсциссу этой точки — косинусом угла а°. |
Строка 17: |
Строка 17: |
| [[Image:Alg53.jpg|320px|Задание]]<br>Ради краткости условились обозначение «рад» опускать, т.е. вполне допустимой является следующая запись: | | [[Image:Alg53.jpg|320px|Задание]]<br>Ради краткости условились обозначение «рад» опускать, т.е. вполне допустимой является следующая запись: |
| | | |
- | [[Image:Alg54.jpg|320px|Задание]]<br>Так что же такое 1 радиан? Вы знаете, что есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° — это центральный угол, опирающийся на дугу, составляющую [[Image:Alg55.jpg]] часть окружности. Угол в 1 радиан — 360 это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу 180° окружности. Из формулы [[Image:Alg56.jpg]] получаем, 1 рад : что 1 рад = 57,3°. | + | [[Image:Alg54.jpg|320px|Задание]]<br>Так что же такое 1 радиан? Вы знаете, что есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° — это центральный угол, опирающийся на дугу, составляющую часть окружности. Угол в 1 радиан — 360 это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу 180° окружности. Из формулы получаем, 1 рад : что 1 рад = 57,3°. |
| | | |
- | Рассматривая функцию u = sin t (или любую другую '''[[Тригонометричні функції числового аргументу. Шпаргалки|тригонометрическую функцию]]'''), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента. | + | Рассматривая функцию u = sin t (или любую другую '''[[Тригонометричні функції числового аргументу. Шпаргалки|тригонометрическую функцию]]'''), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента. |
| | | |
| Завершая этот параграф, убедимся в том, что определения синуса, '''[[4. Синус и косинус|косинуса]]''', тангенса и котангенса, которые вы изучали в геометрии, представляют собой частные случаи тех определений, что были предложены в этой главе. | | Завершая этот параграф, убедимся в том, что определения синуса, '''[[4. Синус и косинус|косинуса]]''', тангенса и котангенса, которые вы изучали в геометрии, представляют собой частные случаи тех определений, что были предложены в этой главе. |
Строка 25: |
Строка 25: |
| [[Image:Alg57.jpg|480px|Теорема]]<br>Доказательство. Совместим прямоугольный треугольник АВС с числовой окружностью так, как показано на рис. 114: вершину А поместим в центр окружности, катет АС «пустим» по положительному направлению оси абсцисс. Точку пересечения гипотенузы АВ с окружностью обозначим буквой М. Опустим из точки М перпендикуляр МР на прямую АС. Заметим, что АР и МР — абсцисса и ордината точки М, т.е. АР = соз А, МР = зш А. Учтем также, что АМ = 1 (радиус числовой окружности равен 1) и что АВ = с, АС = Ь, ВС = а.<br>Так как треугольники АМР и АВС подобны, то | | [[Image:Alg57.jpg|480px|Теорема]]<br>Доказательство. Совместим прямоугольный треугольник АВС с числовой окружностью так, как показано на рис. 114: вершину А поместим в центр окружности, катет АС «пустим» по положительному направлению оси абсцисс. Точку пересечения гипотенузы АВ с окружностью обозначим буквой М. Опустим из точки М перпендикуляр МР на прямую АС. Заметим, что АР и МР — абсцисса и ордината точки М, т.е. АР = соз А, МР = зш А. Учтем также, что АМ = 1 (радиус числовой окружности равен 1) и что АВ = с, АС = Ь, ВС = а.<br>Так как треугольники АМР и АВС подобны, то |
| | | |
- | [[Image:Alg58.jpg|480px|Задание]] | + | [[Image:Alg58.jpg|480px|Задание]] |
| | | |
| <br>Теорема полностью доказана. | | <br>Теорема полностью доказана. |
Строка 31: |
Строка 31: |
| <br> | | <br> |
| | | |
- | ''А.Г. Мордкович Алгебра 10 класс'' | + | ''А.Г. Мордкович Алгебра 10 класс'' |
| | | |
| <br> | | <br> |
Текущая версия на 09:09, 3 августа 2012
Гипермаркет знаний>>Математика>>Математика 10 класс>> Тригонометрические функции углового аргумента
Тригонометрические функции углового аргумента
Термины «синус», «косинус», «тангенс» и «котангенс» на самом деле были вам знакомы, правда, использовали вы их до сих пор в несколько иной интерпретации: в геометрии и в физике рассматривали синус, косинус, тангенс и котангенс у г л а (а не числа, как это было в предыдущих параграфах).
Из геометрии известно, что синус (косинус) острого угла — это отношение катета прямоугольного треугольника к его гипотенузе, а тангенс (котангенс) угла — это отношение катетов прямоугольного треугольника. Иной подход к понятиям синуса, косинуса, тангенса и котангенса развивали мы в предыдущих параграфах. На самом деле эти подходы взаимосвязаны, в чем мы сейчас убедимся.
Возьмем угол с градусной мерой <х° и расположим его в модели «числовая окружность в прямоугольной системе координат» так, как показано на рис. 112: вершину угла совместим с центром окружности (с началом системы координат), а одну сторону угла совместим с положительным лучом оси абсцисс. Точку пересечения второй стороны угла с окружностью обозначим буквой М. Ординату точки М естественно считать синусом угла а°, а абсциссу этой точки — косинусом угла а°.
 Для отыскания синуса или косинуса угла а° совсем не обязательно каждый раз делать указанные весьма сложные построения. Достаточно заметить, что дуга АМ составляет такую же часть длины числовой окружности, какую угол а составляет от угла 360°. Если длину дуги АМ обозначить буквой то получим:
 Считают, что 30° — это градусная мера угла, а
 Ради краткости условились обозначение «рад» опускать, т.е. вполне допустимой является следующая запись:
 Так что же такое 1 радиан? Вы знаете, что есть различные меры длин отрезков: сантиметры, метры, ярды и т.д. Есть и различные меры для обозначения величин углов. Мы рассматриваем центральные углы единичной окружности. Угол в 1° — это центральный угол, опирающийся на дугу, составляющую часть окружности. Угол в 1 радиан — 360 это центральный угол, опирающийся на дугу длиной 1, т.е. на дугу, длина которой равна радиусу 180° окружности. Из формулы получаем, 1 рад : что 1 рад = 57,3°.
Рассматривая функцию u = sin t (или любую другую тригонометрическую функцию), мы можем считать независимую переменную t числовым аргументом, как это было в предыдущих параграфах, но можем считать эту переменную и мерой угла, т.е. угловым аргументом. Поэтому, говоря о тригонометрической функции, в определенном смысле безразлично считать ее функцией числового или углового аргумента.
Завершая этот параграф, убедимся в том, что определения синуса, косинуса, тангенса и котангенса, которые вы изучали в геометрии, представляют собой частные случаи тех определений, что были предложены в этой главе.
 Доказательство. Совместим прямоугольный треугольник АВС с числовой окружностью так, как показано на рис. 114: вершину А поместим в центр окружности, катет АС «пустим» по положительному направлению оси абсцисс. Точку пересечения гипотенузы АВ с окружностью обозначим буквой М. Опустим из точки М перпендикуляр МР на прямую АС. Заметим, что АР и МР — абсцисса и ордината точки М, т.е. АР = соз А, МР = зш А. Учтем также, что АМ = 1 (радиус числовой окружности равен 1) и что АВ = с, АС = Ь, ВС = а. Так как треугольники АМР и АВС подобны, то
Теорема полностью доказана.
А.Г. Мордкович Алгебра 10 класс
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|