Версия 18:42, 24 декабря 2009Гіпермаркет Знань>>Фізика і астрономія>>Фізика 11 клас>> Фізика: Лазер. Створення та застосування квантових генераторів. Узагальнення та систематизація знань з теми ”Будова атома”
СЕМІНАР. ЛАЗЕР. СТВОРЕННЯ ТА ЗАСТОСУВАННЯ КВАНТОВИХ ГЕНЕРАТОРІВ. УЗАГАЛЬНЕННЯ ТА СИСТЕМАТИЗАЦІЯ ЗНАНЬ З ТЕМИ "БУДОВА АТОМА".
Як уже зазначалося, атом не може тривалий час перебувати у збудженому стані — через деякий час (порядку 10-8с) він переходить в умовно стабільний або стабільний стан. Такий самочинний його перехід з одного енергетичного стану в інший супроводжується, як правило, спонтанним випромінюванням кванта світла певної частоти. Оскільки це відбувається з кожним атомом довільно, то за звичайних умов спостерігається спонтанне випромінювання світла атомами, яке в сукупності є різночастотним, немонохроматичним і некогерентним за своєю природою. Електромагнітне випромінювання певної частоти (довжини хвилі) називають монохроматичним; випромінювання, що має однакову фазу, є когерентним У 1917 р. А. Ейнштейн припустив, що за певних умов випромінювання може бути вимушеним. Зокрема, якщо електрон в атомі переходить з одного енергетичного рівня на інший під дією зовнішнього електро-магнітного поля, частота якого збігається з власною частотою квантового переходу електрона v = то випромінювання буде індукованим. Індуковане електромагнітне випромінювання є монохроматичним і когерентним. Особливістю такого випромінювання є те, що воно поширюється в тому самому напрямку, що й падаюче світло, є монохроматичним і когерентним з ним, тобто не відрізняється від поглинутої атомом електромагнітної хвилі ні за частотою, ні за фазою, ні за поляризацією. Інакше кажучи, внаслідок проходження електромагнітної хвилі крізь речовину може відбуватися когерентне підсилення світла за рахунок індукованого випромінювання (мал. 7.11). Таке підсилення можливе лише тоді, коли більшість атомів речовини перебуває у збудженому метастабільному стані. З цією метою можна використовувати різні способи активізації речовини. Зокрема, в рубінових лазерах це робиться за допомогою потужної лампи, яка змушує електрон до квантового переходу на вищий рівень за рахунок поглинання фотона. У такому стані атом може перебувати недовго, і тому через деякий час він повертається у стабільний стан, випромінюючи при цьому світло з частотою падаючого випромінювання: v =----------. Це явище, передбачене ще А.Ейнштейном, покладено в основу принципу дії квантових генераторів і підсилювачів. У 1954 р. російські вчені М. Г. Басов і О. М. Прохоров та незалежно від них у 1955 р. американський фізик Ч. Таунс створили перший квантовий підсилювач електромагнітного випромінювання в діапазоні радіохвиль так званий мазер. У 1964 р. вони були удостоєні Нобелівської премії за фундаментальні праці в галузі квантової електроніки. У 1960 р. американський фізик Т. Мейман створив на кристалі рубіна перший квантовий генератор оптичного діапазону, названий лазером. Рубіновий лазер складається з кристала рубіна (оксид Алюмінію АІ2О3 з домішками Хрому), виготовленого у формі стрижня 1 з плоскопаралельними торцями 2 (мал. 7.12). Один із торців роблять дзеркальним, а другий — напівпрозорим. Рубіновий стрижень охоплює спіральна газорозрядна лампа імпульсного режиму 3, у спектрі випромінювання якої є електромагнітна хвиля збуджувальної частоти. Атом Хрому в кристалі рубіна, поглинаючи фотон з довжиною хвилі 560 нм, активізується і переходить з основного, стабільного стану Е1 у збуджений з енергією E3 (мал. 7.13). У такому стані він існує недовго (близько 10-8 с), після чого самочинно переходить на метастабільний рівень E2, в якому перебуває більш тривалий час (близько 10-3 с). Така трирівнева система активізації рубіна дає змогу насичувати його метастабільний енергетичний рівень. Оскільки більшість атомів Хрому знаходиться у збудженому стані, можливе підсилення світла за рахунок вимушеного електромагнітного випромінювання внаслідок квантового переходу атома з метастабільного енергетичного рівня Е2 на основний з енергією Е1. Лазер — абревіатура слів англійського виразу «Light Amplification by Stimulated Emission of Radiation» (підсилення світла за допомогою вимушеного випромінювання) За допомогою лазерів можна досягати інтенсивності короткочасних імпульсів 1014 Втсм2 , що перевищує інтенсивність випромінювання Сонця в 1010 разів У підсиленні основну роль відіграють хвилі, що прямують уздовж осі стрижня. Багаторазово відбиваючись від плоскопаралельних торців, вони створюють інтенсивне монохроматичне когерентне випромінювання. Лазерне випромінювання характеризується певними властивостями, які вирізняють його серед інших джерел світла. Насамперед це вузькоспрямоване проміння з малим кутом розходження (до 10-5рад). Внаслідок цього можлива точна локалізація променя і його вибіркова дія на атоми, іони, молекули, яка викликає фотохімічні реакції, фотодисоціацію та інші фотоелектричні явища. Ця його властивість використовується в лазерній хімії, технологіях запису інформації на лазерних дисках, лікуванні зору тощо. Вийняткова монохроматичність і когерентність лазерного випромінювання дає змогу використовувати його в побудові стандартів частоти, спектроскопії, голографії, волоконній оптиці, в астрофізичних дослідженнях небесних тіл, тощо. Наприклад, за допомогою лазерної локації вдалося уточнити параметри руху Місяця і Венери, швидкість обертання Меркурія, наявність атмосфер у планет. Висока сконцентрованість енергії лазерного променя дає змогу досягти значної інтенсивності випромінювання, надвисоких температур і тисків. Це використовують у зварюванні і плавленні металів, для одержання надчистих матеріалів, у лазерній хірургії, під час термоядерного синтезу тощо. Залежно від активної речовини лазери бувають газові, рідинні, напівпровідникові та твердотілі. З появою лазерів започатковані такі нові розділи фізики, як нелінійна оптика і голографія. ЗАДАЧІ ДЛЯ САМОСТІЙНОГО РОЗВ'ЯЗУВАННЯ 25 ЗАПИТАННЯ
Зміст уроку
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний - Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов -
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других "взрослых" тем.
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email:








