|
|
|
| Строка 17: |
Строка 17: |
| | а) суцільними, що охоплюють широкий діапазон довжин хвиль;<br>б) лінійчастими, що складаються з окремих спектральних ліній певної довжини хвилі X;<br>в) смугастими — набір окремих смуг, що належать певному інтервалу довжин хвиль. | | а) суцільними, що охоплюють широкий діапазон довжин хвиль;<br>б) лінійчастими, що складаються з окремих спектральних ліній певної довжини хвилі X;<br>в) смугастими — набір окремих смуг, що належать певному інтервалу довжин хвиль. |
| | | | |
| - | [[Image:30241.jpg]] | + | [[Image:30241.jpg]] |
| | | | |
| | Суцільний оптичний спектр спостерігається за умови термодинамічної рівноваги речовини і випромінювання за даної температури. Проте в реальних умовах досягти такого стану практично неможливо, тому найчастіше одночасно спостерігають різні види спектрів. Так, за звичайних умов сонячне світло бачать у спектроскопі у вигляді суцільного спектра з темними лініями поглинання.<br> | | Суцільний оптичний спектр спостерігається за умови термодинамічної рівноваги речовини і випромінювання за даної температури. Проте в реальних умовах досягти такого стану практично неможливо, тому найчастіше одночасно спостерігають різні види спектрів. Так, за звичайних умов сонячне світло бачать у спектроскопі у вигляді суцільного спектра з темними лініями поглинання.<br> |
| Строка 33: |
Строка 33: |
| | Доволі довго атом може перебувати лише в основному стаціонарному стані, що характеризується мінімальною енергією Е<sub>1</sub>. Решта станів атома чи молекули (E<sub>2</sub>, Е<sub>3</sub>, ..., Е<sub>n</sub>) є стаціонарними лише умовно, і тому їх називають збудженими станами. Наприклад, якщо незбуджений атом поглине квант hv, то він може перейти в умовно стабільний, збуджений стан Е<sub>3</sub>, але згодом, випромінивши квант частотою [[Image:3-101.jpg]] атом може перейти в більш стабільний стан Е<sub>2</sub>. Слід підкреслити, що випромінювання відбувається за квантового переходу атома зі стану з більшою енергією у стан з меншою енергією, і навпаки, поглинання енергії атомом супроводжується його переходом зі стану з меншою енергією у стан з більшою енергією.<br>Молекулярні спектри характеризуються сукупністю смуг, за набором яких можна одержати інформацію про склад і структуру молекули, стан її електронних оболонок. Тому їх широко використовують у хімії, спектральному аналізі речовин тощо. | | Доволі довго атом може перебувати лише в основному стаціонарному стані, що характеризується мінімальною енергією Е<sub>1</sub>. Решта станів атома чи молекули (E<sub>2</sub>, Е<sub>3</sub>, ..., Е<sub>n</sub>) є стаціонарними лише умовно, і тому їх називають збудженими станами. Наприклад, якщо незбуджений атом поглине квант hv, то він може перейти в умовно стабільний, збуджений стан Е<sub>3</sub>, але згодом, випромінивши квант частотою [[Image:3-101.jpg]] атом може перейти в більш стабільний стан Е<sub>2</sub>. Слід підкреслити, що випромінювання відбувається за квантового переходу атома зі стану з більшою енергією у стан з меншою енергією, і навпаки, поглинання енергії атомом супроводжується його переходом зі стану з меншою енергією у стан з більшою енергією.<br>Молекулярні спектри характеризуються сукупністю смуг, за набором яких можна одержати інформацію про склад і структуру молекули, стан її електронних оболонок. Тому їх широко використовують у хімії, спектральному аналізі речовин тощо. |
| | | | |
| | + | <br> |
| | | | |
| | + | СПЕКТРАЛЬНИЙ АНАЛІЗ ТА ЙОГО ЗАСТОСУВАННЯ |
| | | | |
| - | СПЕКТРАЛЬНИЙ АНАЛІЗ ТА ЙОГО ЗАСТОСУВАННЯ
| + | Вивчення атомних і молекулярних спектрів випромінювання і поглинання покладено в основу спеціального методу дослідження складу і будови речовини — спектрального аналізу. Він грунтується на кількісних і якісних методах дослідження спектрів електромагнітного випромінювання речовин, які спостерігають за допомогою спеціальних приладів — ''спектрографів і спектрометрів''. |
| | | | |
| - | Вивчення атомних і молекулярних спектрів випромінювання і поглинання покладено в основу спеціального методу дослідження складу і будови речовини — спектрального аналізу. Він грунтується на кількісних і якісних методах дослідження спектрів електромагнітного випромінювання речовин, які спостерігають за допомогою спеціальних приладів — ''спектрографів і спектрометрів''.
| + | Принцип дії цих приладів грунтується на їх здатності виокремлювати в просторі і часі з усього світлового потоку певні ділянки випромінювання. їх можна фіксувати фотографічним способом або вимірювати різні їхні характеристики — зміну світлового потоку, довжину хвилі спектральної лінії тощо (мал. 7.9). Тому головним елементом спектрометрів є селективний пристрій Ф (дисперсійна призма, дифракційна ґратка, інтерферометр тощо), за допомогою якого вдається виділити частину спектра в певному інтервалі довжин хвиль. |
| | | | |
| - | Принцип дії цих приладів грунтується на їх здатності виокремлювати в просторі і часі з усього світлового потоку певні ділянки випромінювання. їх можна фіксувати фотографічним способом або вимірювати різні їхні характеристики — зміну світлового потоку, довжину хвилі спектральної лінії тощо (мал. 7.9). Тому головним елементом спектрометрів є селективний пристрій Ф (дисперсійна призма, дифракційна ґратка, інтерферометр тощо), за допомогою якого вдається виділити частину спектра в певному інтервалі довжин хвиль.
| + | ''Метод визначення в тілах якісного складу і кількісного вмісту речовини за її спектром називають спектральним аналізом'' |
| | | | |
| - | ''Метод визначення в тілах якісного складу і кількісного вмісту речовини за її спектром називають спектральним аналізом'' | + | ''Селективність (від лат. selectus — вибраний) — вибірковість, ступінь здатності до вибірковості'' |
| | | | |
| - | ''Селективність (від лат. selectus — вибраний) — вибірковість, ступінь здатності до вибірковості'' | + | Для вивчення спектрів поглинання світловий потік від джерела Д спрямовують на досліджуваний об'єкт О, після проходження крізь який він потрапляє на селективний пристрій Ф. Відокремлена певним способом частина спектра фіксується пристроями відображення Я (сканувальні екрани, фотоелементи, фотоплівки тощо). Далі характеристики випромінювання порівнюються з одержаним спектром і залежно від обраного методу спектроскопії на підставі їх аналізу роблять висновки щодо досліджуваних спектрів поглинання. |
| | | | |
| - | Для вивчення спектрів поглинання світловий потік від джерела Д спрямовують на досліджуваний об'єкт О, після проходження крізь який він потрапляє на селективний пристрій Ф. Відокремлена певним способом частина спектра фіксується пристроями відображення Я (сканувальні екрани, фотоелементи, фотоплівки тощо). Далі характеристики випромінювання порівнюються з одержаним спектром і залежно від обраного методу спектроскопії на підставі їх аналізу роблять висновки щодо досліджуваних спектрів поглинання.
| + | За допомогою атомного спектрального аналізу визначають елементний склад зразка, зіставляючи його спектр зі спектральними лініями хімічних елементів, що наводяться у спеціальних таблицях і атласах. Для одержання спектра випромінювання досліджувану речовину потрібно перевести в газоподібний стан і активізувати, тобто перевести її атоми у збуджений стан. Найпростіше це можна зробити за допомогою нагрівання досліджуваного зразка, наприклад помістити його в полум'я.<br>Якщо досліджувана речовина перебуває в газоподібному стані, для одержання її лінійчастого спектра використовують іскровий розряд: за високої напруги на електродах у газовому середовищі виникає електричний розряд, у стовпі якого атоми досліджуваної речовини активізуються. Для спектрального аналізу твердих тіл часто застосовують дуговий розряд: досліджуваний зразок у плазмі дуги перетворюється на пару з високою температурою. |
| | | | |
| - | За допомогою атомного спектрального аналізу визначають елементний склад зразка, зіставляючи його спектр зі спектральними лініями хімічних елементів, що наводяться у спеціальних таблицях і атласах. Для одержання спектра випромінювання досліджувану речовину потрібно перевести в газоподібний стан і активізувати, тобто перевести її атоми у збуджений стан. Найпростіше це можна зробити за допомогою нагрівання досліджуваного зразка, наприклад помістити його в полум'я.<br>Якщо досліджувана речовина перебуває в газоподібному стані, для одержання її лінійчастого спектра використовують іскровий розряд: за високої напруги на електродах у газовому середовищі виникає електричний розряд, у стовпі якого атоми досліджуваної речовини активізуються. Для спектрального аналізу твердих тіл часто застосовують дуговий розряд: досліджуваний зразок у плазмі дуги перетворюється на пару з високою температурою.
| + | ''Кожен хімічний елемент має власний набір спектральнихліній, притаманний лише йому одному'' |
| | | | |
| - | ''Кожен хімічний елемент має власний набір спектральнихліній, притаманний лише йому одному'' | + | ''Для одержання спектра випромінювання атоми речовини слід перевести у збуджений стан, наприклад нагріти тіло до високої температури'' |
| | | | |
| - | ''Для одержання спектра випромінювання атоми речовини слід перевести у збуджений стан, наприклад нагріти тіло до високої температури''
| + | За високих температур атоми переходять у збуджений стан Е<sub>2</sub>, E<sub>3</sub>, Е<sub>4</sub>, Е<sub>5</sub>, в якому можуть перебувати недовго (мал. 7.10). З часом вони повертаються у свій основний, стабільний стан E<sub>1</sub>, випромінюючи при цьому світловий квает пеевної частини: |
| | | | |
| - | За високих температур атоми переходять у збуджений стан Е<sub>2</sub>, E<sub>3</sub>, Е<sub>4</sub>, Е<sub>5</sub>, в якому можуть перебувати недовго (мал. 7.10). З часом вони повертаються у свій основний, стабільний стан E<sub>1</sub>, випромінюючи при цьому світловий квает пеевної частини:<br>п =<br>Е'т ^ п<br>(7.3)
| + | [[Image:3-102.jpg]]<br> |
| | | | |
| - | Кожний хімічний елемент має свій, властивий лише йому набір спектральних ліній — атомний спектр. За лініями атомного спектра речовини за допомогою спеціальних таблиць, в яких наведено серії довжин хвиль спектрів випромінювання різних речовин, визначають хімічний склад зразка. | + | Кожний хімічний елемент має свій, властивий лише йому набір спектральних ліній — атомний спектр. За лініями атомного спектра речовини за допомогою спеціальних таблиць, в яких наведено серії довжин хвиль спектрів випромінювання різних речовин, визначають хімічний склад зразка. |
| | | | |
| - | В основу молекулярного спектрального аналізу покладено порівняння виміряного спектра зразка зі спектрами окремих речовин. Молекулярні спектри подібні до атомних — вони також лінійчасті, проте мають свої особливості — спектральних ліній більше, тому вони утворюють доволі широкі смуги. Це пояснюють тим, що внаслідок взаємодії атомів, які складають молекулу, енергетичні рівні атомів розщеплюються, адже їх енергія зумовлена двома чинника¬ми — власними коливаннями атомів у молекулі та іншими її рухами. | + | В основу молекулярного спектрального аналізу покладено порівняння виміряного спектра зразка зі спектрами окремих речовин. Молекулярні спектри подібні до атомних — вони також лінійчасті, проте мають свої особливості — спектральних ліній більше, тому вони утворюють доволі широкі смуги. Це пояснюють тим, що внаслідок взаємодії атомів, які складають молекулу, енергетичні рівні атомів розщеплюються, адже їх енергія зумовлена двома чинника¬ми — власними коливаннями атомів у молекулі та іншими її рухами. |
| | | | |
| - | ''Лінійчастий атомний і смугастий молекулярний спектри відтворюють можливі електронні переходи з одного енергетичного рівня на інші'' | + | ''Лінійчастий атомний і смугастий молекулярний спектри відтворюють можливі електронні переходи з одного енергетичного рівня на інші'' |
| | | | |
| - | ''У гірничодобувній промисловості за допомогою спектрального аналізу визначають хімічний склад зразків корисних копалин'' | + | ''У гірничодобувній промисловості за допомогою спектрального аналізу визначають хімічний склад зразків корисних копалин'' |
| | | | |
| - | Спектр молекули є її однозначною характеристикою, за якою ідентифікують речовини. Кількісний вміст речовини визначається за інтенсивністю випромінювання смугастого спектра. Зокрема, застосування сучасних фотоелектричних приладів сумісно з обчислювальною технікою дає змогу виз-начати склад речовин за досить малих їх мас — до 1 мкг і менше. Тому цей метод знайшов широке застосування в науці і техніці. Зокрема, у металургійному виробництві за його допомогою контролюють вміст домішок у сплавах, щоб отримувати матеріали із заданими властивостями. | + | Спектр молекули є її однозначною характеристикою, за якою ідентифікують речовини. Кількісний вміст речовини визначається за інтенсивністю випромінювання смугастого спектра. Зокрема, застосування сучасних фотоелектричних приладів сумісно з обчислювальною технікою дає змогу виз-начати склад речовин за досить малих їх мас — до 1 мкг і менше. Тому цей метод знайшов широке застосування в науці і техніці. Зокрема, у металургійному виробництві за його допомогою контролюють вміст домішок у сплавах, щоб отримувати матеріали із заданими властивостями. |
| | | | |
| - | Застосування спектрального аналізу в астрофізиці дає змогу визначати хімічний склад і рух небесних тіл, які знаходяться далеко за межами нашої галактики. | + | Застосування спектрального аналізу в астрофізиці дає змогу визначати хімічний склад і рух небесних тіл, які знаходяться далеко за межами нашої галактики. |
| | | | |
| - | <u>ЗАПИТАННЯ</u><br>1. Які існують оптичні спектри залежно від характеру поширення електромагнітних хвиль?<br>2. Які бувають види спектрів?<br>3. Як можна пояснити природу лінійчастих спектрів?<br>4. Які переходи атома супроводжуються поглинанням світла, а які — випромінюванням?<br>5. Що таке спектральний аналіз?<br>6. Який принцип покладено в основу дії спектральних приладів?<br>7. Для чого застосовують спектральний аналіз? | + | <u>ЗАПИТАННЯ</u><br>1. Які існують оптичні спектри залежно від характеру поширення електромагнітних хвиль?<br>2. Які бувають види спектрів?<br>3. Як можна пояснити природу лінійчастих спектрів?<br>4. Які переходи атома супроводжуються поглинанням світла, а які — випромінюванням?<br>5. Що таке спектральний аналіз?<br>6. Який принцип покладено в основу дії спектральних приладів?<br>7. Для чого застосовують спектральний аналіз? |
| | | | |
| | <br> ''Є.В. Коршак, О.І. Ляшенко, В.Ф. Савченко, Фізика, 11 клас<br>Вислано читачами з інтернет-сайтів '' | | <br> ''Є.В. Коршак, О.І. Ляшенко, В.Ф. Савченко, Фізика, 11 клас<br>Вислано читачами з інтернет-сайтів '' |
Версия 18:21, 24 декабря 2009
Гіпермаркет Знань>>Фізика і астрономія>>Фізика 11 клас>> Фізика: Неперервний і лінійчастий спектри. Спектри поглинання і випромінювання. Спектральний аналіз та його застосування
НЕПЕРЕРВНИЙ І ЛІНІЙЧАСТИЙ СПЕКТРИ. СПЕКТРИ ПОГЛИНАННЯ І ВИПРОМІНЮВАННЯ. СПЕКТРАЛЬНИЙ АНАЛІЗ ТА ЙОГО ЗАСТОСУВАННЯ
ОПТИЧНІ СПЕКТРИ. ПОГЛИНАННЯ І ВИПРОМІНЮВАННЯ СВІТЛА АТОМОМ
Електромагнітне випромінювання будь-якої природи може характеризуватися спектром коливань, на які можна розкласти його за довжиною хвилі або частотою. Залежно від характеру поширення електромагнітних хвиль оптичні спектри поділяють на спектри випромінювання, поглинання, розсіювання і відбиття.
Оптичні спектри випромінювання спостерігаються у джерел світла, які випускають фотони внаслідок збудження речовини під впливом зовнішнього чинника. Наприклад, розжарена вольфрамова нитка електричної лампи випромінює світло внаслідок її нагрівання при проходженні по ній електричного струму. Останні три види спектрів спостерігаються в разі проходження випромінювання крізь речовину, внаслідок чого відбувається його поглинання, розсіювання і відбивання залежно від властивостей і довжини хвилі . або її частоти v.
Оптичні спектри поглинання, розсіювання і відбивання характеризують властивості речовини
Оптичні спектри спостерігають візуально за допомогою спектральних приладів і фіксують, як правило, фотографічним способом або за допомогою фотоелементів. Спектри можуть бути (мал. 7.7):
а) суцільними, що охоплюють широкий діапазон довжин хвиль; б) лінійчастими, що складаються з окремих спектральних ліній певної довжини хвилі X; в) смугастими — набір окремих смуг, що належать певному інтервалу довжин хвиль.
Суцільний оптичний спектр спостерігається за умови термодинамічної рівноваги речовини і випромінювання за даної температури. Проте в реальних умовах досягти такого стану практично неможливо, тому найчастіше одночасно спостерігають різні види спектрів. Так, за звичайних умов сонячне світло бачать у спектроскопі у вигляді суцільного спектра з темними лініями поглинання.
Механізм утворення суцільних оптичних спектрів пояснює класична електродинаміка. За її тлумаченням поглинуте електромагнітне випромінювання збуджує в речовині хвилі, частота яких відповідає частоті падаючого світла.
Проте класична фізика виявилася безпорадною у поясненні лінійчастих і смугастих спектрів випромінювання і поглинання світла атомами і молекулами. їхню природу можна зрозуміти лише на основі квантових постулатів Бора та інтерпретації квантових переходів між рівнями енергії в атомах і молекулах.
За класичною теорією монохроматичне світло збуджуватиме хвилі певної частоти, а природне світло утворюватиме суцільний спектр випромінювання
Для наочного ілюстрування станів атома використовують енергетичні діаграми, на яких рівні енергії позначають горизонтальними лініями (мал. 7.8).
Доволі довго атом може перебувати лише в основному стаціонарному стані, що характеризується мінімальною енергією Е1. Решта станів атома чи молекули (E2, Е3, ..., Еn) є стаціонарними лише умовно, і тому їх називають збудженими станами. Наприклад, якщо незбуджений атом поглине квант hv, то він може перейти в умовно стабільний, збуджений стан Е3, але згодом, випромінивши квант частотою атом може перейти в більш стабільний стан Е2. Слід підкреслити, що випромінювання відбувається за квантового переходу атома зі стану з більшою енергією у стан з меншою енергією, і навпаки, поглинання енергії атомом супроводжується його переходом зі стану з меншою енергією у стан з більшою енергією. Молекулярні спектри характеризуються сукупністю смуг, за набором яких можна одержати інформацію про склад і структуру молекули, стан її електронних оболонок. Тому їх широко використовують у хімії, спектральному аналізі речовин тощо.
СПЕКТРАЛЬНИЙ АНАЛІЗ ТА ЙОГО ЗАСТОСУВАННЯ
Вивчення атомних і молекулярних спектрів випромінювання і поглинання покладено в основу спеціального методу дослідження складу і будови речовини — спектрального аналізу. Він грунтується на кількісних і якісних методах дослідження спектрів електромагнітного випромінювання речовин, які спостерігають за допомогою спеціальних приладів — спектрографів і спектрометрів.
Принцип дії цих приладів грунтується на їх здатності виокремлювати в просторі і часі з усього світлового потоку певні ділянки випромінювання. їх можна фіксувати фотографічним способом або вимірювати різні їхні характеристики — зміну світлового потоку, довжину хвилі спектральної лінії тощо (мал. 7.9). Тому головним елементом спектрометрів є селективний пристрій Ф (дисперсійна призма, дифракційна ґратка, інтерферометр тощо), за допомогою якого вдається виділити частину спектра в певному інтервалі довжин хвиль.
Метод визначення в тілах якісного складу і кількісного вмісту речовини за її спектром називають спектральним аналізом
Селективність (від лат. selectus — вибраний) — вибірковість, ступінь здатності до вибірковості
Для вивчення спектрів поглинання світловий потік від джерела Д спрямовують на досліджуваний об'єкт О, після проходження крізь який він потрапляє на селективний пристрій Ф. Відокремлена певним способом частина спектра фіксується пристроями відображення Я (сканувальні екрани, фотоелементи, фотоплівки тощо). Далі характеристики випромінювання порівнюються з одержаним спектром і залежно від обраного методу спектроскопії на підставі їх аналізу роблять висновки щодо досліджуваних спектрів поглинання.
За допомогою атомного спектрального аналізу визначають елементний склад зразка, зіставляючи його спектр зі спектральними лініями хімічних елементів, що наводяться у спеціальних таблицях і атласах. Для одержання спектра випромінювання досліджувану речовину потрібно перевести в газоподібний стан і активізувати, тобто перевести її атоми у збуджений стан. Найпростіше це можна зробити за допомогою нагрівання досліджуваного зразка, наприклад помістити його в полум'я. Якщо досліджувана речовина перебуває в газоподібному стані, для одержання її лінійчастого спектра використовують іскровий розряд: за високої напруги на електродах у газовому середовищі виникає електричний розряд, у стовпі якого атоми досліджуваної речовини активізуються. Для спектрального аналізу твердих тіл часто застосовують дуговий розряд: досліджуваний зразок у плазмі дуги перетворюється на пару з високою температурою.
Кожен хімічний елемент має власний набір спектральнихліній, притаманний лише йому одному
Для одержання спектра випромінювання атоми речовини слід перевести у збуджений стан, наприклад нагріти тіло до високої температури
За високих температур атоми переходять у збуджений стан Е2, E3, Е4, Е5, в якому можуть перебувати недовго (мал. 7.10). З часом вони повертаються у свій основний, стабільний стан E1, випромінюючи при цьому світловий квает пеевної частини:

Кожний хімічний елемент має свій, властивий лише йому набір спектральних ліній — атомний спектр. За лініями атомного спектра речовини за допомогою спеціальних таблиць, в яких наведено серії довжин хвиль спектрів випромінювання різних речовин, визначають хімічний склад зразка.
В основу молекулярного спектрального аналізу покладено порівняння виміряного спектра зразка зі спектрами окремих речовин. Молекулярні спектри подібні до атомних — вони також лінійчасті, проте мають свої особливості — спектральних ліній більше, тому вони утворюють доволі широкі смуги. Це пояснюють тим, що внаслідок взаємодії атомів, які складають молекулу, енергетичні рівні атомів розщеплюються, адже їх енергія зумовлена двома чинника¬ми — власними коливаннями атомів у молекулі та іншими її рухами.
Лінійчастий атомний і смугастий молекулярний спектри відтворюють можливі електронні переходи з одного енергетичного рівня на інші
У гірничодобувній промисловості за допомогою спектрального аналізу визначають хімічний склад зразків корисних копалин
Спектр молекули є її однозначною характеристикою, за якою ідентифікують речовини. Кількісний вміст речовини визначається за інтенсивністю випромінювання смугастого спектра. Зокрема, застосування сучасних фотоелектричних приладів сумісно з обчислювальною технікою дає змогу виз-начати склад речовин за досить малих їх мас — до 1 мкг і менше. Тому цей метод знайшов широке застосування в науці і техніці. Зокрема, у металургійному виробництві за його допомогою контролюють вміст домішок у сплавах, щоб отримувати матеріали із заданими властивостями.
Застосування спектрального аналізу в астрофізиці дає змогу визначати хімічний склад і рух небесних тіл, які знаходяться далеко за межами нашої галактики.
ЗАПИТАННЯ 1. Які існують оптичні спектри залежно від характеру поширення електромагнітних хвиль? 2. Які бувають види спектрів? 3. Як можна пояснити природу лінійчастих спектрів? 4. Які переходи атома супроводжуються поглинанням світла, а які — випромінюванням? 5. Що таке спектральний аналіз? 6. Який принцип покладено в основу дії спектральних приладів? 7. Для чого застосовують спектральний аналіз?
Є.В. Коршак, О.І. Ляшенко, В.Ф. Савченко, Фізика, 11 клас Вислано читачами з інтернет-сайтів
Підручники та книги по всім предметам, домашня робота, онлайн бібліотеки книжок, плани конспектів уроків з фізики, реферати та конспекти уроків з фізики для 11 класу
Зміст уроку
конспект уроку і опорний каркас
презентація уроку
акселеративні методи та інтерактивні технології
закриті вправи (тільки для використання вчителями)
оцінювання
Практика
задачі та вправи,самоперевірка
практикуми, лабораторні, кейси
рівень складності задач: звичайний, високий, олімпійський
домашнє завдання
Ілюстрації
ілюстрації: відеокліпи, аудіо, фотографії, графіки, таблиці, комікси, мультимедіа
реферати
фішки для допитливих
шпаргалки
гумор, притчі, приколи, приказки, кросворди, цитати
Доповнення
зовнішнє незалежне тестування (ЗНТ)
підручники основні і допоміжні
тематичні свята, девізи
статті
національні особливості
словник термінів
інше
Тільки для вчителів
ідеальні уроки
календарний план на рік
методичні рекомендації
програми
обговорення
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|