|
|
Строка 7: |
Строка 7: |
| <br> | | <br> |
| | | |
- | ''' § 116 ВИДИМЫЕ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ'''<br><br>Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий. Во II в. до н. э. Гиппарх разделил звезды по блеску на звездные величины, самые яркие он отнес к звездам первой величины (1<sup>m</sup>), а самые слабые, едва видимые невооруженным глазом, — к 6<sup>m</sup>. В созвездии звезды обозначаются греческими буквами, некоторые самые яркие звезды имеют собственные названия. Так, Полярная звезда — [[Image:7.02-6.jpg]] Малой Медведицы имеет блеск 2<sup>m</sup>. Самая яркая звезда северного неба Вега — [[Image:7.02-6.jpg]] Лиры имеет блеск около О<sup>m</sup>. | + | ''' § 117 ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ'''<br><br>В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл три закона их движения. На основании этих законов И. Ньютон вывел формулу для закона всемирного тяготения. В дальнейшем, используя законы механики, И. Ньютон решил задачу двух тел — вывел законы, по которым одно тело движется в поле тяготения другого тела. Он получил три обобщенных закона Кеплера. |
| | | |
- | Особое место среди созвездий занимали 12 зодиакальных созвездий, через которые проходит годичный путь Солнца — эклиптика. Так, в марте Солнце движется по созвездию Рыб, в мае — Тельца, в августе — Льва, в ноябре — Скорпиона.
| + | '''''Первый закон Кеплера. Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений — кругу, эллипсу, параболе или гиперболе (рис. 15.5).''''' |
| | | |
- | В настоящее время для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них — экваториальная система координат (рис. 15.1). В ее основе лежит небесный экватор — проекция земного экватора на небесную сферу.<br><br>[[Image:15.02-10.jpg]]<br><br>Эклиптика и экватор пересекаются в двух точках: весеннего [[Image:15.02-11.jpg]] равноденствия.
| + | Планеты движутся вокруг Солнца по эллиптической орбите (рис. 15.6). Ближайшая к Солнцу точка орбиты называется перигелием, самая далекая — афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. Эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а — среднее расстояние планеты до Солнца. |
| | | |
- | Точка весеннего равноденствия находится в созвездии Рыбы, и она служит начальной точкой, от которой в направлении против часовой стрелки отсчитывается координата прямое восхождение, которую обычно обозначают буквой [[Image:7.02-6.jpg]]. Эта координата является аналогом долготы в географических координатах. В астрономии принято прямое восхождение измерять в часовой мере, а не в градусной. При этом исходят из того, что полная окружность составляет 24 ч.
| + | По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 < е < 1, у параболы е = 1, у гиперболы е > 1 (см. рис. 15.5). |
| | | |
- | <br>[[Image:15.02-12.jpg]]<br><br>Вторая координата светила [[Image:16.02-1.jpg]] — склонение,— является аналогом широты, ее измеряют в градусной мере. Так, звезда Альтаир ([[Image:7.02-6.jpg]] Орла) имеет координаты [[Image:7.02-6.jpg]] = 19<sup>ч</sup>48<sup>м</sup>18<sup>с</sup>, склонение [[Image:16.02-1.jpg]] = + 8°44'. Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты (рис. 15.2), которые используют астрономы при поиске нужных светил.
| + | Движение естественных и искусственных спутников вокруг планет, движение одной звезды вокруг другой в двойной системе также подчиняются этому первому обобщенному закону Кеплера. |
| | | |
- | Взаимное расположение звезд на небе не меняется, они совершают суточное вращение вместе с небесной сферой. Планеты наряду с суточным вращением совершают медленное движение среди звезд, оправдывая свое название (planetas в переводе с греческого — блуждающая звезда).
| + | '''''Второй закон Кеплера. Каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает равные площади.''''' |
| | | |
- | Видимый путь планет на небе петлеобразен. Размеры описываемых планетами петель различны. На рисунке 15.3 показано видимое петлеобразное движение Марса, которое длится 79 дней.
| + | Планета проходит путь от точки А до А' и от В до В' (рис. 15.7) за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего —когда находится на наибольшем удалении (в афелии). |
| | | |
- | Наиболее просто видимое движение планет и Солнца описывается в системе отсчета, связанной с Солнцем. Такой подход получил название гелиоцентрической системы мира и был предложен польским астрономом Николаем Коперником (1473—1543).<br><br>[[Image:15.02-13.jpg]]<br><br>В этой системе суточное движение небесного свода объясняется вращением Земли вокруг оси, годичное движение Солнца по эклиптике — движением Земли вокруг Солнца, а описываемые планетами петли — сложением движений Земли и планет (см. рис. 15.3). Вокруг Земли движется только Луна. Коперник рассчитал расстояния планет до Солнца.
| + | Таким образом, второй закон Кеплера определяет скорость движения планеты. Она тем больше, чем планета ближе к Солнцу. Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.<br><br>[[Image:15.02-17.jpg]]<br>'''''<br>Третий закон Кеплера. Куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс тел, есть величина постоянная.''''' |
| | | |
- | В астрономии среднее расстояние от Земли до Солнца принято за единицу расстояния и называется астрономической единицей (а. е.), 1 а. е. = 150 • 10<sup>6</sup> км. Так, Меркурий находится от Земли на расстоянии 0,39 а. е., а Сатурн — на расстоянии 9,54 а. е.
| + | Если Т — период обращения одного тела вокруг другого тела на среднем расстоянии а, то третий обобщенный закон Кеплера записывается как<br><br>a<sup>3</sup>/[T<sup>2</sup> (M<sub>1</sub> + М<sub>2</sub>)] = G/4[[Image:7.02-19.jpg]]<sup>2</sup> , (15.2)<br><br>где M<sub>1</sub> и М<sub>2</sub> — массы притягивающихся двух тел, а G — гравитационная постоянная. Для Солнечной системы масса Солнца [[Image:15.02-18.jpg]] массы любой планеты, и тогда<br><br>аЗ/Т2 = GM[[Image:16.02-2.jpg]]/4[[Image:7.02-19.jpg]]<sup>2</sup>. (15.3)<br><br>Правая часть уравнения — постоянная для всех тел Солнечной системы, что и утверждает третий закон Кеплера, полученный ученым из наблюдений. |
| | | |
- | В античные времена и вплоть до Коперника полагали, что в центре Вселенной расположена Земля и все небесные тела обращаются по сложным траекториям вокруг нее. Эта система мира называется геоцентричекой системой мира.<br><br>[[Image:15.02-14.jpg]]<br> <br>'''Доказательство движения Земли вокруг Солнца и определение расстояний до звезд.''' Если Земля обращается вокруг Солнца, то близкие звезды должны периодически смещаться на фоне более далеких звезд. Это смещение называется параллактическим, а угол 71, под которым со звезды виден радиус земной орбиты, называется параллаксом. Как видно из рисунка 15.4, расстояние до звезды<br> <br>[[Image:15.02-15.jpg]]<br> <br>Так как параллакс звезд мал, мы заменили синус малого угла самим углом, выраженным в радианной мере, а затем перепзли от радианной меры к градусной, учтя, что 1 рад = 206 265". В астрономии принято измерять расстояние до звезд в парсеках (пк).<br><br>1 пк = 206 265 • а<sub>о</sub> = 206 265 • 150 • 10<sup>6</sup> км = 3 • 10<sup>13</sup> км.<br><br>Итак, если параллакс измерять в угловых секундах, а расстояние до звезды — в парсеках, то связью между ними будет равенство<br><br>[[Image:15.02-16.jpg]]<br><br>Только во второй половине XIX в. удалось измерить параллаксы и расстояния до звезд и тем самым подтвердить теорию Коперника наблюдениями. Так, ближайшая к нам звезда [[Image:7.02-6.jpg]] Центавра имеет параллакс [[Image:7.02-19.jpg]] = 0,751", поэтому расстояние до нее r = 1,33 пк 4 • 10<sup>13</sup> км.<br><br>Для определения положения звезд используются небесные экваториальные координаты. Сложное петлеобразное движение планет объясняется движением Земли и планет вокруг Солнца, а наблюдение годичного параллакса у звезд не только подтверждает обращение Земли вокруг Солнца, но и позволяет определять расстояния до иих.<br>
| + | Третий обобщенный закон Кеплера позволяет определять массы планет по движению их спутников, а массы двойных звезд — по элементам их орбит. |
| | | |
- | [[Image:7.02-1.jpg]]<br>1. Что называется небесным экватором)<br>2. Что такое эклиптика!<br>3. Чем отличается геоцентрическая система мира от гелиоцентрической!<br>4. Что такое парсек!<br><br><br><br><br><br> | + | Движение планет и других небесных тел вокруг Солнца под действием силы тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них. |
| + | |
| + | <br>[[Image:7.02-1.jpg]]<br>1. Перечислите основные элементы эллиптической орбиты планеты.<br>2. Как связаны периоды обращения планет с их средними расстояниями до Солнца!<br>3. Сформулируйте первый обобщенный закон Кеплера.<br>4. Запишите третий обобщенный закон Кеплера.<br> |
| + | |
| + | |
| + | |
| + | ''' '''<br><br><br><br><br> |
| | | |
| <br> ''Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.'' | | <br> ''Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.'' |
Версия 09:53, 17 февраля 2011
Гипермаркет знаний>>Физика и астрономия>>Физика 11 класс>> Законы движения планет
§ 117 ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ
В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл три закона их движения. На основании этих законов И. Ньютон вывел формулу для закона всемирного тяготения. В дальнейшем, используя законы механики, И. Ньютон решил задачу двух тел — вывел законы, по которым одно тело движется в поле тяготения другого тела. Он получил три обобщенных закона Кеплера.
Первый закон Кеплера. Под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений — кругу, эллипсу, параболе или гиперболе (рис. 15.5).
Планеты движутся вокруг Солнца по эллиптической орбите (рис. 15.6). Ближайшая к Солнцу точка орбиты называется перигелием, самая далекая — афелием. Линия, соединяющая какую-либо точку эллипса с фокусом, называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е. Эллипс тем сильнее вытянут, чем больше его эксцентриситет. Большая полуось эллипса а — среднее расстояние планеты до Солнца.
По эллиптическим орбитам движутся и кометы и астероиды. У окружности е = 0, у эллипса 0 < е < 1, у параболы е = 1, у гиперболы е > 1 (см. рис. 15.5).
Движение естественных и искусственных спутников вокруг планет, движение одной звезды вокруг другой в двойной системе также подчиняются этому первому обобщенному закону Кеплера.
Второй закон Кеплера. Каждая планета движется так, что радиус-вектор планеты за равные промежутки времени описывает равные площади.
Планета проходит путь от точки А до А' и от В до В' (рис. 15.7) за одно и то же время. Другими словами, планета движется быстрее всего в перигелии, а медленнее всего —когда находится на наибольшем удалении (в афелии).
Таким образом, второй закон Кеплера определяет скорость движения планеты. Она тем больше, чем планета ближе к Солнцу. Так, скорость кометы Галлея в перигелии равна 55 км/с, а в афелии 0,9 км/с.

Третий закон Кеплера. Куб большой полуоси орбиты тела, деленный на квадрат периода его обращения и на сумму масс тел, есть величина постоянная.
Если Т — период обращения одного тела вокруг другого тела на среднем расстоянии а, то третий обобщенный закон Кеплера записывается как
a3/[T2 (M1 + М2)] = G/4 2 , (15.2)
где M1 и М2 — массы притягивающихся двух тел, а G — гравитационная постоянная. Для Солнечной системы масса Солнца массы любой планеты, и тогда
аЗ/Т2 = GM /4 2. (15.3)
Правая часть уравнения — постоянная для всех тел Солнечной системы, что и утверждает третий закон Кеплера, полученный ученым из наблюдений.
Третий обобщенный закон Кеплера позволяет определять массы планет по движению их спутников, а массы двойных звезд — по элементам их орбит.
Движение планет и других небесных тел вокруг Солнца под действием силы тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них.
 1. Перечислите основные элементы эллиптической орбиты планеты. 2. Как связаны периоды обращения планет с их средними расстояниями до Солнца! 3. Сформулируйте первый обобщенный закон Кеплера. 4. Запишите третий обобщенный закон Кеплера.
Мякишев Г. Я., Физика. 11 класс : учеб. для общеобразоват. учреждений : базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд., перераб. и доп. — М. : Просвещение, 2008. — 399 с : ил.
Материалы по физике за 11 класс скачать, конспект по физике, учебники и книги скатать бесплатно, школьная программа онлайн
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь - Образовательный форум.
|